Auxiliary Field Quantum Monte-Carlo using Tensor Network States

Brecht Verstichel, Sebastian Wouters and Garnet Chan

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium

September 4, 2014
Imaginary time evolution

- If we take an arbitrary state:

 \[|\psi_T\rangle = \sum_i c_i |\psi_i\rangle \quad \text{with} \quad \hat{H} |\psi_i\rangle = E_i |\psi_i\rangle \]

 and propagate it in imaginary time:

 \[e^{-\tau \hat{H}} |\psi_T\rangle = \sum_i e^{-\tau E_i} c_i |\psi_i\rangle, \]

 higher energy components are suppressed.

- For long enough times and \(\langle \psi_0 | \psi_T \rangle \neq 0 \):

 \[|\psi_0\rangle \propto \lim_{\tau \to \infty} e^{-\tau \hat{H}} |\psi_T\rangle \]

- Problem: naive propagation has exponential cost.
Introducing Auxiliary Fields

• Take a Heisenberg model with arbitrary interactions J_{ij}:

$$\hat{H} = \frac{1}{2} \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \quad \text{with} \quad J_{ij} = \sum_k \lambda_k v_i^k v_j^k$$

• The Hamiltonian can be expressed as the sum of squared one-site operators:

$$\hat{H} = \frac{1}{2} \sum_k \lambda_k v^2_k \quad \text{with} \quad \mathbf{v}^k = \sum_i v_i^k \mathbf{S}_i$$

• Now we can approximate the propagator for a small time step as:

$$e^{-\delta \tau \hat{H}} \approx \prod_{k,r \in \{xyz\}} e^{\frac{1}{2} V_{kr}^2} + O(\delta \tau^2) \quad \text{with} \quad V_{kr} = \sqrt{-\delta \tau \lambda_k} \hat{\nu}_{kr}$$
Every individual term can be written as a gaussian integral:

\[e^{\frac{1}{2}V^2_{kr}} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{\sigma^2_{kr}}{2}} e^{\sigma_{kr} \hat{V}_{kr}} d\sigma_{kr} \]

If we represent the wave function by a large number of simple walkers:

\[|\psi\rangle = \sum_{i=1}^{N_w} w_i |\Omega_i\rangle \]

we can evaluate the integral using Monte-Carlo.

Sample \(\sigma_{kr} \) from a normal distribution, and propagate the walkers:

\[|\Omega^{(n+1)}_i\rangle = \prod_{kr} e^{\sigma_{kr} \hat{O}_{kr}} |\Omega^{(n)}_i\rangle \]

These propagators are just local spin rotations and do not increase the complexity of the walkers.
Importance sampling and the sign problem

- Statistical fluctuations will be very large since \(\sigma_{kx} \) is completely random. Improve by distorting normal distribution using trial wave function \(|\Psi_T\rangle \):

\[
\tilde{p}(\sigma_{kx}) = e^{-\frac{1}{2}\sigma_{kx}^2} \frac{\langle \Psi_T | \Omega^{(n+1)}_i \rangle}{\langle \Psi_T | \Omega^{(n)}_i \rangle} \rightarrow \text{Importance Sampling}
\]

- Sampling is completely symmetric in the phase of the walker, leading to a phase problem which is remedied by imposing the constraint:

\[
\Re \langle \Psi_T | \Omega^{(n+1)}_i \rangle > 0 \rightarrow \text{Constrained Phase}
\]

- Implemented approximately using *phaseless approximation* [S. Zhang et al. PRL 90, 136401].

- Introduces *bias* into result dependent on the quality of the trial wave function!
Matrix product states as trial functions

- Matrix product states (MPS) are a wave function ansatz:

\[|\psi\rangle = \sum_{\sigma_1 \ldots \sigma_n} [A^{\sigma_1} \ldots A^{\sigma_n}] |\sigma_1 \ldots \sigma_n\rangle \quad \text{with} \quad (A^{\sigma_i})_{jk} \quad D\text{-dim matrix} \]

that is systematically improved by increasing the bond dimension.

- By using MPS with increasing \(D \) as trial we can remove the bias introduced by the phaseless approximation.

- Proof of principle implementation of MPS-AFQMC on the 2D \(J_1 J_2 \) model, which is frustrated and has a sign problem.

- MPS are used for both the trial as the walker states, with different bond dimensions \(D_T \) and \(D_W \).
Influence of walker bond dimension: 4×4 $J_2 = 0$
Convergence with discarded weight: 4×4 $J_2 = 0.6$

![Graph showing the convergence of MPS-AFQMC, DMRG, and exact methods with respect to discarded weight.](image)

$E(D_T = \infty) = -8.4133 \pm 0.0014$
Convergence with $D_T: 10 \times 10$ $J_2 = 0.5$

![Graph showing convergence with D_T]
Improvement over DMRG for all J_2: 10×10
Conclusions

- MPS-AFQMC energy converges to the exact result as D_T increases.

- The QMC walk always improves upon DMRG result, sometimes reducing the error up to a factor of 5. Result tracks the modulation of the trial error across the different regimes of $\frac{J_1}{J_2}$.

- No influence of D_W on energy or statistics. Computational scaling of QMC is better than DMRG $O(D_T^2)$ vs. $O(D_T^3)$.
Outlook

- MPS in principle not suited for 2D systems. Bond dimension needed for same accuracy scales exponentially with system size.

- PEPS are 2D generalization of MPS. Bond dimension needed for same accuracy is constant with system size.

- Problem: computationally very expensive to work with. High scaling with D makes it hard to converge result.

- Using PEPS as a trial one could improve the result, increase effective D, without adding extra computational cost.