Interplays between stochastic calculus and geometric inequalities and some new bounds related to the Gaussian convolution operator

Ronen Eldan

Weizmann Institute of Science

NYC, May 2015
Our setting is \mathbb{R}^n equipped with the standard Gaussian measure γ.

We consider the convolution operator

$$P_t[f](x) := \mathbb{E} \left[f \left(\sqrt{tx} + \sqrt{1 - t} \right) \right], \quad 0 \leq t \leq 1$$

where Γ is a standard Gaussian random vector.

The renormalization is chosen such that $\int f d\gamma = \int P_t f d\gamma$ for all t, f.

We will also consider the associated quadratic form

$$Q_t(f) = \langle f, P_t f \rangle_\gamma = \int f(x) P_t[f](x) d\gamma(x).$$
Our setting is \mathbb{R}^n equipped with the standard Gaussian measure γ.

We consider the convolution operator

$$P_t[f](x) := \mathbb{E} \left[f \left(\sqrt{t} x + \sqrt{1-t} \Gamma \right) \right], \quad 0 \leq t \leq 1$$

where Γ is a standard Gaussian random vector.

The renormalization is chosen such that $\int f d\gamma = \int P_t f d\gamma$ for all t, f.

We will also consider the associated quadratic form

$$Q_t(f) = \langle f, P_t f \rangle_\gamma = \int f(x) P_t[f](x) d\gamma(x).$$
Our setting is \mathbb{R}^n equipped with the standard Gaussian measure γ. We consider the convolution operator

$$P_t[f](x) := \mathbb{E} \left[f \left(\sqrt{t} x + \sqrt{1 - t} \Gamma \right) \right], \quad 0 \leq t \leq 1$$

where Γ is a standard Gaussian random vector.

The renormalization is chosen such that $\int f d\gamma = \int P_t f d\gamma$ for all t, f.

We will also consider the associated quadratic form

$$Q_t(f) = \langle f, P_t f \rangle_\gamma = \int f(x) P_t[f](x) d\gamma(x).$$
The Ornstein-Uhlenbeck convolution operator

- Our setting is \mathbb{R}^n equipped with the standard Gaussian measure γ.
- We consider the convolution operator
 \[P_t[f](x) := \mathbb{E} \left[f \left(\sqrt{t} x + \sqrt{1 - t} \Gamma \right) \right], \quad 0 \leq t \leq 1 \]

 where Γ is a standard Gaussian random vector.
- The renormalization is chosen such that $\int f d\gamma = \int P_t f d\gamma$ for all t, f.
- We will also consider the associated quadratic form
 \[Q_t(f) = \langle f, P_t f \rangle_{\gamma} = \int f(x) P_t[f](x) d\gamma(x). \]
An analytic vs. a probabilistic point of view

For a function $f \in L_2(\gamma)$, consider its Fourier-Hermite representation

$$f(x) = \sum_{\ell \in \mathbb{N}^n} C_\ell(f) H_\ell(x).$$

Then $Q_t(f)$ is diagonalizable over the above basis, and we have

$$Q_t(f) = \sum_{\ell \in \mathbb{N}^n} t^{\ell} C_\ell(f)^2.$$

On the other hand, we have

$$Q_t(f) = \mathbb{E} \left[f(\sqrt{t}Z_1 + \sqrt{1-t}Z_2) f(\sqrt{t}Z_1 + \sqrt{1-t}Z_3) \right]$$

where Z_1, Z_2, Z_3 are standard Gaussian random vectors.
For a function $f \in L_2(\gamma)$, consider its Fourier-Hermite representation

$$f(x) = \sum_{\ell \in \mathbb{N}^n} C_{\ell}(f) H_{\ell}(x).$$

Then $Q_t(f)$ is diagonalizable over the above basis, and we have

$$Q_t(f) = \sum_{\ell \in \mathbb{N}^n} t^{||\ell||} C_{\ell}(f)^2.$$

On the other hand, we have

$$Q_t(f) = \mathbb{E} \left[f(\sqrt{t}Z_1 + \sqrt{1-t}Z_2)f(\sqrt{t}Z_1 + \sqrt{1-t}Z_3) \right]$$

where Z_1, Z_2, Z_3 are standard Gaussian random vectors.
For a set $A \subset \mathbb{R}^n$, the quantity $Q_t(A) = Q_t(1_A)$ is sometimes referred to as the noise stability of A.

Theorem: Borell’s noise stability inequality

If $A \subset \mathbb{R}^n$ and H is a half-space such that $\gamma(A) = \gamma(H)$ then

$$Q_t(H) \geq Q_t(A)$$

- The limit case $t \to 1$ is the Gaussian Isoperimetric inequality of Borell, Sudakov-Tsirelson.
- The limit case $t \to 0$ boils down to understanding $|\int_A x d\gamma|^2$.
- **Claim:** Out of all possible sets whose Gaussian measure is exactly $\gamma(A)$, the quantity $|\int_A x d\gamma|$ is maximized on half-spaces.
- We would like to somehow use this principle for larger values of t.
For a set $A \subset \mathbb{R}^n$, the quantity $Q_t(A) = Q_t(1_A)$ is sometimes referred to as the noise stability of A.

Theorem: Borell’s noise stability inequality

If $A \subset \mathbb{R}^n$ and H is a half-space such that $\gamma(A) = \gamma(H)$ then

$$Q_t(H) \geq Q_t(A)$$

The limit case $t \to 1$ is the Gaussian isoperimetric inequality of Borell, Sudakov-Tsirelson.

The limit case $t \to 0$ boils down to understanding $|\int_A x d\gamma|^2$.

Claim: Out of all possible sets whose Gaussian measure is exactly $\gamma(A)$, the quantity $|\int_A x d\gamma|$ is maximized on half-spaces.

We would like to somehow use this principle for larger values of t.

Ronen Eldan Stochastic calculus and geometric inequalities
For a set \(A \subseteq \mathbb{R}^n \), the quantity \(Q_t(A) = Q_t(\mathbf{1}_A) \) is sometimes referred to as the noise stability of \(A \).

Theorem: Borell’s noise stability inequality

If \(A \subseteq \mathbb{R}^n \) and \(H \) is a half-space such that \(\gamma(A) = \gamma(H) \) then

\[
Q_t(H) \geq Q_t(A)
\]

- The limit case \(t \to 1 \) is the Gaussian Isoperimetric inequality of Borell, Sudakov-Tsirelson.
- The limit case \(t \to 0 \) boils down to understanding \(|\int_A xd\gamma|^2 \).

Claim: Out of all possible sets whose Gaussian measure is exactly \(\gamma(A) \), the quantity \(|\int_A xd\gamma| \) is maximized on half-spaces.

We would like to somehow use this principle for larger values of \(t \).
For a set $A \subseteq \mathbb{R}^n$, the quantity $Q_t(A) = Q_t(1_A)$ is sometimes referred to as the noise stability of A.

Theorem: Borell’s noise stability inequality

If $A \subseteq \mathbb{R}^n$ and H is a half-space such that $\gamma(A) = \gamma(H)$ then

$$Q_t(H) \geq Q_t(A)$$

The limit case $t \to 1$ is the Gaussian *Isoperimetric inequality* of Borell, Sudakov-Tsirelson.

The limit case $t \to 0$ boils down to understanding $|\int_A x d\gamma|^2$.

Claim: Out of all possible sets whose Gaussian measure is exactly $\gamma(A)$, the quantity $|\int_A x d\gamma|$ is maximized on half-spaces.

We would like to somehow use this principle for larger values of t.

Ronen Eldan
Stochastic calculus and Geometric inequalities
Borell’s noise-stability inequality

For a set $A \subset \mathbb{R}^n$, the quantity $Q_t(A) = Q_t(1_A)$ is sometimes referred to as the noise stability of A.

Theorem: Borell’s noise stability inequality

If $A \subset \mathbb{R}^n$ and H is a half-space such that $\gamma(A) = \gamma(H)$ then

$$Q_t(H) \geq Q_t(A)$$

The limit case $t \to 1$ is the Gaussian *Isoperimetric inequality* of Borell, Sudakov-Tsirelson.

The limit case $t \to 0$ boils down to understanding $|\int_A x d\gamma|^2$.

Claim: Out of all possible sets whose Gaussian measure is exactly $\gamma(A)$, the quantity $|\int_A x d\gamma|$ is maximized on half-spaces.

We would like to somehow use this principle for larger values of t.
A stochastic approach for the proof

We begin by writing

\[Q_t(A) = \mathbb{P}(\sqrt{t}Z_1 + \sqrt{1-t}Z_2 \in A \text{ and } \sqrt{t}Z_1 + \sqrt{1-t}Z_3 \in A) \]

\[= \mathbb{E}_{Z_1}[\mathbb{P}(\sqrt{t}Z_1 + \sqrt{1-t}Z_2 \in A \text{ and } \sqrt{t}Z_1 + \sqrt{1-t}Z_3 \in A|Z_1)] \]

\[= \mathbb{E}_{Z_1} \left[\mathbb{P}(\sqrt{t}Z_1 + \sqrt{1-t}Z_2 \in A|Z_1)^2 \right]. \]

Now let \(W_t \) be a standard Brownian motion. Then

\((W_t, W_1) \sim (\sqrt{t}Z_1, \sqrt{t}Z_1 + \sqrt{1-t}Z_2).\)

So,

\[Q_t(A) = \mathbb{E} \left[\mathbb{P}(W_1 \in A|W_t)^2 \right] \]
A stochastic approach for the proof

We begin by writing

\[Q_t(A) = \mathbb{P}(\sqrt{t}Z_1 + \sqrt{1-t}Z_2 \in A \text{ and } \sqrt{t}Z_1 + \sqrt{1-t}Z_3 \in A) = \mathbb{E}_{Z_1}[\mathbb{P}(\sqrt{t}Z_1 + \sqrt{1-t}Z_2 \in A \text{ and } \sqrt{t}Z_1 + \sqrt{1-t}Z_3 \in A|Z_1)] = \mathbb{E}_{Z_1}[\mathbb{P}(\sqrt{t}Z_1 + \sqrt{1-t}Z_2 \in A|Z_1)^2]. \]

Now let \(W_t \) be a standard Brownian motion. Then

\[(W_t, W_1) \sim (\sqrt{t}Z_1, \sqrt{t}Z_1 + \sqrt{1-t}Z_2). \]

So,

\[Q_t(A) = \mathbb{E}[\mathbb{P}(W_1 \in A|W_t)^2] \]
Consider the Doob martingale

\[M_t = \mathbb{P}(W_1 \in A \mid W_t). \]

Then,

\[Q_t(A) = \mathbb{E}(M_t^2). \]

Since \(M_t \) is a martingale, we have that

\[\mathbb{E}(M_t^2) - M_0^2 = \text{Var}(M_t) = \mathbb{E}[M]_t \]

where \([M]_t\) is the quadratic variation of the process \(M_t \). The last equality is a continuous version of the fact that

\[\mathbb{E} \left(\sum \Delta_i \right)^2 = \mathbb{E} \sum (\Delta_i)^2 \]

where \(\Delta_i \) are martingale increments.

Calculating the stability of a set under Gaussian perturbations boils down to calculating the quadratic variation of \(M_t \).
Consider the Doob martingale

\[M_t = \mathbb{P}(W_1 \in A | W_t). \]

Then,

\[Q_t(A) = \mathbb{E}(M_t^2). \]

Since \(M_t \) is a martingale, we have that

\[\mathbb{E}(M_t^2) - M_0^2 = \text{Var}(M_t) = \mathbb{E}[M]_t \]

where \([M]_t\) is the quadratic variation of the process \(M_t \). The last equality is a continuous version of the fact that

\[\mathbb{E} \left(\sum \Delta_i \right)^2 = \mathbb{E} \sum (\Delta_i)^2 \]

where \(\Delta_i \) are martingale increments.

Calculating the stability of a set under Gaussian perturbations boils down to calculating the quadratic variation of \(M_t \).
Consider the Doob martingale

\[M_t = \mathbb{P}(W_1 \in A|W_t). \]

Then,

\[Q_t(A) = \mathbb{E}(M_t^2). \]

Since \(M_t \) is a martingale, we have that

\[\mathbb{E}(M_t^2) - M_0^2 = \text{Var}(M_t) = \mathbb{E}[M]_t \]

where \([M]_t\) is the quadratic variation of the process \(M_t \). The last equality is a continuous version of the fact that

\[\mathbb{E}\left(\sum \Delta_i\right)^2 = \mathbb{E}\sum_i (\Delta_i)^2 \]

where \(\Delta_i \) are martingale increments.

Calculating the stability of a set under Gaussian perturbations boils down to calculating the quadratic variation of \(M_t \).
Recall that for small t, one has $Q_t(A) \sim t \left| \int_A xd\gamma \right|^2$. So we also have that

$$\frac{d}{dt} [M]_t \bigg|_{t=0} = \left(\int_A xd\gamma \right)^2.$$

But up to some renormalization of time and space, different values of t should behave essentially the same!

And indeed, a straightforward calculation, using Itô’s formula, gives

$$\frac{d}{dt} [M]_t = (1 - t)^{-1} \left| \int_{A - \frac{W_t}{\sqrt{1-t}}} xd\gamma(x) \right|^2.$$

Note also that

$$\gamma \left(\frac{A - W_t}{\sqrt{1-t}} \right) = M_t.$$
Recall that for small t, one has $Q_t(A) \sim t \left| \int_A x d\gamma \right|^2$. So we also have that

$$\frac{d}{dt} [M]_t \bigg|_{t=0} = \left| \int_A x d\gamma \right|^2.$$

But up to some renormalization of time and space, different values of t should behave essentially the same!

And indeed, a straightforward calculation, using Itô’s formula, gives

$$\frac{d}{dt} [M]_t = (1 - t)^{-1} \left| \int_{A - W_t \sqrt{1 - t}} x d\gamma(x) \right|^2.$$

Note also that

$$\gamma \left(\frac{A - W_t}{\sqrt{1 - t}} \right) = M_t.$$
Recall that for small t, one has $Q_t(A) \sim t \left| \int_A x d\gamma \right|^2$. So we also have that

$$\frac{d}{dt} [M]_t \bigg|_{t=0} = \left| \int_A x d\gamma \right|^2.$$

But up to some renormalization of time and space, different values of t should behave essentially the same!

And indeed, a straightforward calculation, using Itô’s formula, gives

$$\frac{d}{dt} [M]_t = (1 - t)^{-1} \left| \int_{A - W_t}^{A} x d\gamma(x) \right|^2.$$

Note also that

$$\gamma \left(\frac{A - W_t}{\sqrt{1 - t}} \right) = M_t.$$
Let N_t be the martingale defined in the same way as M_t only that A is replaced by the half-space H. The above claim implies that

$$\frac{d}{dt} [M]_t \leq \frac{d}{dt} [N]_t \bigg|_{N_t = M_t}.$$

The Dambis / Dubins-Schwarz theorem

Every continuous martingale is a time change of a Brownian motion.

We may couple the processes M_t and N_t via the Dambis / Dubins-Schwartz theorem so that

$$M_t = M_0 + B([M]_t), \quad N_t = N_0 + B([N]_t)$$

where $B(\cdot)$ is a standard (1-dimensional) Brownian motion.

Under this coupling, we have that $[N]_t \geq [M]_t$ for all t, almost surely. This finishes the proof.
Let N_t be the martingale defined in the same way as M_t only that A is replaced by the half-space H. The above claim implies that

$$\frac{d}{dt}[M]_t \leq \frac{d}{dt}[N]_t \bigg|_{N_t=M_t}.$$

The Dambis / Dubins-Schwarz theorem

Every continuous martingale is a time change of a Brownian motion.

We may couple the processes M_t and N_t via the Dambis / Dubins-Schwarz theorem so that

$$M_t = M_0 + B([M]_t), \quad N_t = N_0 + B([N]_t)$$

where $B(\cdot)$ is a standard (1-dimensional) Brownian motion.

Under this coupling, we have that $[N]_t \geq [M]_t$ for all t, almost surely. This finishes the proof.
Let N_t be the martingale defined in the same way as M_t only that A is replaced by the half-space H. The above claim implies that

$$\frac{d}{dt} [M]_t \leq \frac{d}{dt} [N]_t \bigg|_{N_t = M_t}.$$

The Dambis / Dubins-Schwarz theorem

Every continuous martingale is a time change of a Brownian motion.

We may couple the processes M_t and N_t via the Dambis / Dubins-Schwarz theorem so that

$$M_t = M_0 + B([M]_t), \quad N_t = N_0 + B([N]_t)$$

where $B(\cdot)$ is a standard (1-dimensional) Brownian motion.

Under this coupling, we have that $[N]_t \geq [M]_t$ for all t, almost surely. This finishes the proof.
Robustness for Borell’s inequality

Consider the

\[
\text{deficit } \delta(A) := Q_t(H) - Q_t(A).
\]

Theorem (Moseel-Neeman, ’12)

If \(A \subset \mathbb{R}^n \) and \(H \) is the half-space minimizing \(\gamma(A \Delta H) \), such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0, \)

\[
C^{-1} \gamma(A \Delta H)^4 \leq \delta(A).
\]

- For \(A \subset \mathbb{R}^n \) set \(\varepsilon(A) = \left| \int_H x d\gamma(x) \right|^2 - \left| \int_A x d\gamma(x) \right|^2 \) where \(H \) is a half-space having \(\gamma(H) = \gamma(A) \).

Theorem (E., ’13)

If \(A \subset \mathbb{R}^n \) and \(H \) is a half-space such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0, \)

\[
C^{-1} \varepsilon(A) |\log(\varepsilon(A))|^{-1} \leq \delta(A) \leq C \varepsilon(A).
\]
Robustness for Borell’s inequality

Consider the deficit \(\delta(A) := Q_t(H) - Q_t(A) \).

Theorem (Moseel-Neeman, ’12)

If \(A \subseteq \mathbb{R}^n \) and \(H \) is the half-space minimizing \(\gamma(A \Delta H) \), such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0 \),

\[
C^{-1}\gamma(A \Delta H)^4 \leq \delta(A).
\]

- For \(A \subseteq \mathbb{R}^n \) set \(\epsilon(A) = |\int_H x d\gamma(x)|^2 - |\int_A x d\gamma(x)|^2 \) where \(H \) is a half-space having \(\gamma(H) = \gamma(A) \).

Theorem (E., ’13)

If \(A \subseteq \mathbb{R}^n \) and \(H \) is a half-space such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0 \),

\[
C^{-1}\epsilon(A)|\log(\epsilon(A))|^{-1} \leq \delta(A) \leq C\epsilon(A).
\]
Robustness for Borell’s inequality

Consider the

\[\text{deficit } \delta(A) := Q_t(H) - Q_t(A). \]

Theorem (Moseel-Neeman, ’12)

If \(A \subseteq \mathbb{R}^n \) and \(H \) is the half-space minimizing \(\gamma(A \Delta H) \), such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0, \)

\[C^{-1} \gamma(A \Delta H)^4 \leq \delta(A). \]

- For \(A \subseteq \mathbb{R}^n \) set \(\varepsilon(A) = \left| \int_H x d\gamma(x) \right|^2 - \left| \int_A x d\gamma(x) \right|^2 \) where \(H \) is a half-space having \(\gamma(H) = \gamma(A) \).

Theorem (E., ’13)

If \(A \subseteq \mathbb{R}^n \) and \(H \) is a half-space such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0, \)

\[C^{-1} \varepsilon(A) |\log(\varepsilon(A))|^{-1} \leq \delta(A) \leq C \varepsilon(A). \]
Robustness for Borell’s inequality

Consider the *deficit* \(\delta(A) := Q_t(H) - Q_t(A) \).

Theorem (Moseel-Neeman, ’12)

If \(A \subset \mathbb{R}^n \) and \(H \) is the half-space minimizing \(\gamma(A \Delta H) \), such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0, \)

\[C^{-1} \gamma(A \Delta H)^4 \leq \delta(A). \]

- For \(A \subset \mathbb{R}^n \) set \(\varepsilon(A) = |\int_H x d\gamma(x)|^2 - |\int_A x d\gamma(x)|^2 \) where \(H \) is a half-space having \(\gamma(H) = \gamma(A) \).

Theorem (E., ’13)

If \(A \subset \mathbb{R}^n \) and \(H \) is a half-space such that \(\gamma(A) = \gamma(H) \) then for some \(C = C(\gamma(A), t) > 0, \)

\[C^{-1} \varepsilon(A) |\log(\varepsilon(A))|^{-1} \leq \delta(A) \leq C \varepsilon(A). \]
Let go back to the (measure-valued) process $W_t | \mathcal{F}_t$. Denote its density by F_t. An easy calculation gives

$$dF_t(x) = (1 - t)^{-1/2} F_t(x) \langle x - W_t, dW_t \rangle$$

If we denote $V_t^{(1)} = \int_{A - W_t / \sqrt{1-t}} x d\gamma(x)$, then

$$dV_t^{(1)} = \left(\int_{A - W_t / \sqrt{1-t}} x \otimes x d\gamma(x) \right) dW_t$$

and so on.
Some ideas for the proof: considering the second derivatives

- We define

\[\epsilon_t = \left| \int_{\frac{H-W_t}{\sqrt{1-t}}} y d\gamma(y) \right|^2 - \left| \int_{\frac{A-W_t}{\sqrt{1-t}}} y d\gamma(y) \right|^2. \]

- According to the above, the process \(\frac{d}{dt} [N_t - [M]_t] \) is large given that \(\epsilon_t \) is bounded away from 0.

- We want to show: \(\epsilon_0 \) is large \(\Rightarrow \epsilon_t > c\epsilon_0 \) in an interval \(t \in [0, \delta] \) for \(\delta \) large enough.

- It turns out to be useful to consider **second derivatives**, hence to calculate \(d\epsilon_t \).

- In analogy to the log-Laplace transform, the second derivative has to do with the covariance matrices of \(\gamma \) restricted to these sets.
Some ideas for the proof: considering the second derivatives

- We define
 \[
 \epsilon_t = \left| \int_{\frac{H-W_t}{\sqrt{1-t}}} y d\gamma(y) \right|^2 - \left| \int_{\frac{A-W_t}{\sqrt{1-t}}} y d\gamma(y) \right|^2.
 \]

- According to the above, the process \(\frac{d}{dt} \left[N_t - [M]_t \right] \) is large given that \(\epsilon_t \) is bounded away from 0.

- We want to show: \(\epsilon_0 \) is large \(\Rightarrow \epsilon_t > c\epsilon_0 \) in an interval \(t \in [0, \delta] \) for \(\delta \) large enough.

- It turns out to be useful to consider second derivatives, hence to calculate \(d\epsilon_t \).

- In analogy to the log-Laplace transform, the second derivative has to do with the covariance matrices of \(\gamma \) restricted to these sets.
Some ideas for the proof: considering the second derivatives

- We define

\[\epsilon_t = \left| \int_{H-W_t \sqrt{1-t}} yd\gamma(y) \right|^2 - \left| \int_{A-W_t \sqrt{1-t}} yd\gamma(y) \right|^2. \]

- According to the above, the process \(\frac{d}{dt} [N]_t - [M]_t \) is large given that \(\epsilon_t \) is bounded away from 0.

- We want to show: \(\epsilon_0 \) is large \(\Rightarrow \) \(\epsilon_t > c\epsilon_0 \) in an interval \(t \in [0, \delta] \) for \(\delta \) large enough.

- It turns out to be useful to consider second derivatives, hence to calculate \(d\epsilon_t \).

- In analogy to the log-Laplace transform, the second derivative has to do with the covariance matrices of \(\gamma \) restricted to these sets.
Some ideas for the proof: considering the second derivatives

- We define

\[\epsilon_t = \left| \int_{\frac{H-W_t}{\sqrt{1-t}}} yd\gamma(y) \right|^2 - \left| \int_{\frac{A-W_t}{\sqrt{1-t}}} yd\gamma(y) \right|^2. \]

- According to the above, the process \(\frac{d}{dt} [N]_t - [M]_t \) is large given that \(\epsilon_t \) is bounded away from 0.

- We want to show: \(\epsilon_0 \) is large \(\Rightarrow \epsilon_t > c\epsilon_0 \) in an interval \(t \in [0, \delta] \) for \(\delta \) large enough.

- It turns out to be useful to consider **second derivatives**, hence to calculate \(d\epsilon_t \).

- In analogy to the log-Laplace transform, the second derivative has to do with the covariance matrices of \(\gamma \) restricted to these sets.
Some ideas for the proof: considering the second derivatives

- We define
 \[\epsilon_t = \left| \int_{H-W_t/\sqrt{1-t}} y d\gamma(y) \right|^2 - \left| \int_{A-W_t/\sqrt{1-t}} y d\gamma(y) \right|^2. \]

- According to the above, the process \(\frac{d}{dt} [N]_t - [M]_t \) is large given that \(\epsilon_t \) is bounded away from 0.

- We want to show: \(\epsilon_0 \) is large \(\Rightarrow \) \(\epsilon_t > c\epsilon_0 \) in an interval \(t \in [0, \delta] \) for \(\delta \) large enough.

- It turns out to be useful to consider **second derivatives**, hence to calculate \(d\epsilon_t \).

- In analogy to the log-Laplace transform, the second derivative has to do with the covariance matrices of \(\gamma \) restricted to these sets.
It is well-known that the operator P_t has the following smoothing property,

Theorem - hypercontractivity of the operator P_t (Gross, Nelson,...)

For any $p > 1$ and $t > 0$, there exists a constant $q > p$ satisfying

$$
\| P_t f \|_{L_q(\gamma)} \leq \| f \|_{L_p(\gamma)}.
$$

for all $f \in L_p(\gamma)$

- This fact has applications to several fields such as analysis of PDEs and quantum information theory.
- Does P_t admit any regularization properties over L_1?
Hypercontractivity

- It is well-known that the operator P_t has the following smoothing property,

Theorem - hypercontractivity of the operator P_t (Gross, Nelson,...)

For any $p > 1$ and $t > 0$, there exists a constant $q > p$ satisfying

$$
\|P_t f\|_{L_q(\gamma)} \leq \|f\|_{L_p(\gamma)}.
$$

for all $f \in L_p(\gamma)$

- This fact has applications to several fields such as analysis of PDEs and quantum information theory.
- Does P_t admit any regularization properties over L_1?
Hypercontractivity

- It is well-known that the operator P_t has the following smoothing property,

Theorem - hypercontractivity of the operator P_t (Gross, Nelson,...)

For any $p > 1$ and $t > 0$, there exists a constant $q > p$ satisfying

$$\|P_t f\|_{L_q(\gamma)} \leq \|f\|_{L_p(\gamma)}.$$

for all $f \in L_p(\gamma)$

- This fact has applications to several fields such as analysis of PDEs and quantum information theory.
- Does P_t admit any regularization properties over L_1?
What about L_1 functions?

Question (Talagrand)

Is it true that for every non-negative function f such that $\mathbb{E}f(\Gamma) = 1$ one has

$$\mathbb{E} \left[P_t[f](\Gamma) \mathbf{1}_{\{ P_t[f](\Gamma) \in [\alpha, 2\alpha] \}} \right] \leq \frac{C(t)}{\alpha} g(\alpha)$$

for some function $g(\alpha)$ satisfying $g(\alpha) \to 0$ as $\alpha \to \infty$?

Theorem (Ball, Barthe, Bednorz, Oleszkiewicz and Wolff 2010)

For every non-negative function f such that $\mathbb{E}f(\Gamma) = 1$ one has

$$\mathbb{P}(P_t[f](\Gamma) > \alpha) \leq \frac{C(n, t) \log \log \alpha}{\alpha \sqrt{\log \alpha}}.$$
What about L_1 functions?

Question (Talagrand)

Is it true that for every non-negative function f such that $\mathbb{E} f(\Gamma) = 1$ one has

$$\mathbb{E} \left[P_t[f](\Gamma) \mathbf{1}_{\{P_t[f](\Gamma) \in [\alpha, 2\alpha]\}} \right] \leq \frac{C(t)}{\alpha} g(\alpha)$$

for some function $g(\alpha)$ satisfying $g(\alpha) \to 0$ as $\alpha \to \infty$?

Theorem (Ball, Barthe, Bednorz, Oleszkiewicz and Wolff 2010)

For every non-negative function f such that $\mathbb{E} f(\Gamma) = 1$ one has

$$\mathbb{P}(P_t[f](\Gamma) > \alpha) \leq \frac{C(n, t) \log \log \alpha}{\alpha \sqrt{\log \alpha}}.$$
A logarithmic anti-concentration result

Theorem (E., Lee 2014)

If \(g \) is a positive function satisfying \(\mathbb{E}[g(\Gamma)] = 1 \) and

\[
\nabla^2 \log g(x) \succeq -\beta \text{Id}, \quad \forall x \in \mathbb{R}^n
\]

then

\[
\mathbb{E} \left[g(\Gamma) \mathbf{1}_{g(\Gamma) \in [s, 2s]} \right] \leq \frac{C(\beta)(\log \log s)^4}{(\log s)^{1/2}}, \quad \forall s \geq 2
\]

- It is easy to check that \(P_t[f] \) satisfies (1) with \(\beta = \frac{1}{t} \).
- Talagrand’s conjecture follows with \(\varphi(\alpha) \sim \frac{\log^4 \log \alpha}{\sqrt{\log \alpha}} \).
- The dependence on \(\alpha \) is optimal up to the log log factor, which was very recently removed by J. Lehec.
We have a positive function $g(x)$ satisfying $\mathbb{E}[g(\Gamma)] = 1$ and $\nabla^2 \log g(x) \succeq -\beta \text{Id}$.

Define a measure μ by $\frac{d\mu}{d\gamma}(x) = g(x)$. Suppose by contradiction that $\mu(E \setminus F) = \Omega(1)$ where $E = \{x; \ g(x) > \alpha\}$ and $F = \{x; g(x) > 2\alpha\}$.

Define

$$T(x) = x + \frac{\nabla \log g(x)}{|\nabla \log g(x)|^2} \log 2$$

and $E' = T(E)$.

We would like to show: (i) $E'' \subset F$, (ii) $\mu(E') \approx \mu(E)$.

The Hessian estimate gives $\log g(T(x)) \geq \log g(x) + \log 2 - \frac{\beta}{|\nabla \log g(x)|^2}$.
A first attempt at the proof

- We have a positive function $g(x)$ satisfying $\mathbb{E}[g(\Gamma)] = 1$ and $\nabla^2 \log g(x) \succeq -\beta \text{Id}$.
- Define a measure μ by $\frac{d\mu}{d\gamma}(x) = g(x)$. Suppose by contradiction that $\mu(E \setminus F) = \Omega(1)$ where $E = \{x; g(x) > \alpha\}$ and $F = \{x; g(x) > 2\alpha\}$.
- Define
 \[
 T(x) = x + \frac{\nabla \log g(x)}{|\nabla \log g(x)|^2} \log 2
 \]
 and $E' = T(E)$.
- We would like to show: (i) $E''' \subseteq ''F$, (ii) $\mu(E') \approx \mu(E)$.
- The Hessian estimate gives $\log g(T(x)) \geq \log g(x) + \log 2 - \frac{\beta}{|\nabla \log g(x)|^2}$.

Ronen Eldan

Stochastic calculus and Geometric inequalities
We have a positive function \(g(x) \) satisfying \(\mathbb{E}[g(\Gamma)] = 1 \) and
\[\nabla^2 \log g(x) \succeq -\beta \text{Id}. \]

Define a measure \(\mu \) by \(\frac{d\mu}{d\gamma}(x) = g(x) \). Suppose by contradiction that
\[\mu(E \setminus F) = \Omega(1) \] where \(E = \{ x; g(x) > \alpha \} \) and \(F = \{ x; g(x) > 2\alpha \} \).

Define
\[T(x) = x + \frac{\nabla \log g(x)}{|\nabla \log g(x)|^2} \log 2 \]
and \(E' = T(E) \).

We would like to show: (i) \(E'' \subset F \), (ii) \(\mu(E') \approx \mu(E) \).

The Hessian estimate gives
\[\log g(T(x)) \geq \log g(x) + \log 2 - \frac{\beta}{|\nabla \log g(x)|^2}. \]
A first attempt at the proof

We have a positive function $g(x)$ satisfying $\mathbb{E}[g(\Gamma)] = 1$ and $\nabla^2 \log g(x) \succeq -\beta \text{Id}$.

Define a measure μ by $\frac{d\mu}{d\gamma}(x) = g(x)$. Suppose by contradiction that $\mu(E \setminus F) = \Omega(1)$ where $E = \{x; \ g(x) > \alpha\}$ and $F = \{x; \ g(x) > 2\alpha\}$.

Define

$$T(x) = x + \frac{\nabla \log g(x)}{|\nabla \log g(x)|^2} \log 2$$

and $E' = T(E)$.

We would like to show: (i) $E''' \subset F$, (ii) $\mu(E') \approx \mu(E)$.

The Hessian estimate gives $\log g(T(x)) \geq \log g(x) + \log 2 - \frac{\beta}{|\nabla \log g(x)|^2}$.

Ronen Eldan
Stochastic calculus and Geometric inequalities
A first attempt at the proof

We have a positive function $g(x)$ satisfying $\mathbb{E}[g(\Gamma)] = 1$ and
$\nabla^2 \log g(x) \succeq -\beta \text{Id}$.

Define a measure μ by $\frac{d\mu}{d\gamma}(x) = g(x)$. Suppose by contradiction that
$\mu(E \setminus F) = \Omega(1)$ where $E = \{x; g(x) > \alpha\}$ and $F = \{x; g(x) > 2\alpha\}$.

Define

$$T(x) = x + \frac{\nabla \log g(x)}{\|
abla \log g(x)\|^2} \log 2$$

and $E' = T(E)$.

We would like to show: (i) $E'' \subset F$, (ii) $\mu(E') \approx \mu(E)$.

The Hessian estimate gives $\log g(T(x)) \geq \log g(x) + \log 2 - \frac{\beta}{\|
abla \log g(x)\|^2}$.

Ronen Eldan
Stochastic calculus and Geometric inequalities
Fix a positive function g on \mathbb{R}^n satisfying $\int g d\gamma = 1$.

Let W_t be a Brownian motion (with an underlying measure Q). Define, as above, $M_t = \mathbb{E}[g(W_1)|W_t]$.

Now consider the change of measure $\frac{dP}{dQ} = M_1 = g(W_1)$ so that under the measure P, W_1 has the distribution $gd\gamma$.

According to Girsanov’s theorem, under this change of measure the process W_t satisfies

$$dW_t = dB_t + \nu_t dt, \quad \nu_t = \nabla \log P_t[g](B_t)$$

where B_t is a Q-Brownian motion.

Föllmer’s drift was used by J. Lehec (2010) to give stochastic proofs of numerous inequalities in Gaussian space such as Shannon’s inequality, Log-Sobolev, Brascamp Lieb inequalities etc (uses some ideas of Borell, 2000).
Fix a positive function g on \mathbb{R}^n satisfying $\int g \, d\gamma = 1$.

Let W_t be a Brownian motion (with an underlying measure Q). Define, as above, $M_t = \mathbb{E}[g(W_1) | W_t]$.

Now consider the change of measure $\frac{dP}{dQ} = M_1 = g(W_1)$ so that under the measure P, W_1 has the distribution $gd\gamma$.

According to Girsanov’s theorem, under this change of measure the process W_t satisfies
\[dW_t = dB_t + \nu_t \, dt, \quad \nu_t = \nabla \log P_t[g](B_t) \]

where B_t is a Q-Brownian motion.

Föllmer’s drift was used by J. Lehec (2010) to give stochastic proofs of numerous inequalities in Gaussian space such as Shannon’s inequality, Log-Sobolev, Brascamp Lieb inequalities etc (uses some ideas of Borell, 2000).
Föllmer’s drift

- Fix a positive function g on \mathbb{R}^n satisfying $\int g d\gamma = 1$.
- Let W_t be a Brownian motion (with an underlying measure Q). Define, as above, $M_t = \mathbb{E}[g(W_1) | W_t]$.
- Now consider the change of measure $\frac{dP}{dQ} = M_1 = g(W_1)$ so that under the measure P, W_1 has the distribution $gd\gamma$.
- According to Girsanov’s theorem, under this change of measure the process W_t satisfies
 \[dW_t = dB_t + \nu_t dt, \quad \nu_t = \nabla \log P_t[g](B_t) \]
 where B_t is a Q-Brownian motion.
- Föllmer’s drift was used by J. Lehec (2010) to give stochastic proofs of numerous inequalities in Gaussian space such as Shannon’s inequality, Log-Sobolev, Brascamp Lieb inequalities etc (uses some ideas of Borell, 2000).
Fix a positive function g on \mathbb{R}^n satisfying $\int g\,d\gamma = 1$.

Let W_t be a Brownian motion (with an underlying measure Q). Define, as above, $M_t = \mathbb{E}[g(W_1)\mid W_t]$.

Now consider the change of measure $\frac{dP}{dQ} = M_1 = g(W_1)$ so that under the measure P, W_1 has the distribution $gd\gamma$.

According to Girsanov’s theorem, under this change of measure the process W_t satisfies

$$dW_t = dB_t + \nu_t\,dt, \quad \nu_t = \nabla \log P_t[g](B_t)$$

where B_t is a Q-Brownian motion.

Föllmer’s drift was used by J. Lehec (2010) to give stochastic proofs of numerous inequalities in Gaussian space such as Shannon’s inequality, Log-Sobolev, Brascamp Lieb inequalities etc (uses some ideas of Borell, 2000).
Fix a positive function g on \mathbb{R}^n satisfying $\int g \, d\gamma = 1$.

Let W_t be a Brownian motion (with an underlying measure Q). Define, as above, $M_t = \mathbb{E}[g(W_1)|W_t]$.

Now consider the change of measure $\frac{dP}{dQ} = M_1 = g(W_1)$ so that under the measure P, W_1 has the distribution $gd\gamma$.

According to Girsanov’s theorem, under this change of measure the process W_t satisfies

$$dW_t = dB_t + \nu_t \, dt, \quad \nu_t = \nabla \log P_t[g](B_t)$$

where B_t is a Q-Brownian motion.

Föllmer’s drift was used by J. Lehec (2010) to give stochastic proofs of numerous inequalities in Gaussian space such as Shannon’s inequality, Log-Sobolev, Brascamp Lieb inequalities etc (uses some ideas of Borell, 2000).
Let X_t be a Brownian motion with respect to a probability space (Ω, P) and suppose that

$$Y_t = X_t + \int_0^t v_s ds$$

for some adapted drift v_t. **Girsanov’s theorem** states that the measures associated to the processes B_t, W_t are absolutely continuous with respect to each other and that if one defines the change of measure

$$\frac{dQ}{dP} = \exp \left(- \int_0^1 \langle v_t, dX_t \rangle - \frac{1}{2} \int_0^1 |v_t|^2 dt \right)$$

then the process Y_t becomes a Brownian motion with respect to the measure Q.

Perturbing Fölmer’s drift

Idea: instead of perturbing the point x, we define an adapted perturbation in the space of paths.

Recall that $dW_t = dB_t + v_t dt$. We define

$$dW_t^\delta = dB_t + (1 + \delta)v_t dt$$

Girsanov’s theorem gives us a precise formula for the measure of the "sets" E_δ.

The main difficulty becomes proving that this perturbation is correlated with the gradient of the function.

In other words that $\left\langle \int_0^1 v_t, v_1 \right\rangle$ is rather large, with high probability.

Fact

The process v_t is a martingale.
Perturbing Fölmer’s drift

- **Idea:** instead of perturbing the point x, we define an adapted perturbation in the space of paths.

- Recall that $dW_t = dB_t + v_t dt$. We define

$$dW_t^\delta = dB_t + (1 + \delta)v_t dt$$

- Girsanov’s theorem gives us a precise formula for the measure of the "sets" E_δ.

- The main difficulty becomes proving that this perturbation is correlated with the gradient of the function.

- In other words that $\langle \int_0^1 v_t, v_1 \rangle$ is rather large, with high probability.

Fact

The process v_t is a martingale.
Perturbing Fölmer’s drift

- **Idea:** instead of perturbing the point \(x \), we define an adapted perturbation in the space of paths.

- Recall that \(dW_t = dB_t + \nu_t \, dt \). We define
 \[
 dW_{t}^\delta = dB_t + (1 + \delta) \nu_t \, dt
 \]

- Girsanov’s theorem gives us a precise formula for the measure of the "sets" \(E_\delta \).
 - The main difficulty becomes proving that this perturbation is correlated with the gradient of the function.
 - In other words that \(\langle \int_0^1 \nu_t, \nu_1 \rangle \) is rather large, with high probability.

Fact

The process \(\nu_t \) is a martingale.
Perturbing Fölmer’s drift

- **Idea:** instead of perturbing the point x, we define an adapted perturbation in the space of paths.
- Recall that $dW_t = dB_t + \nu_t dt$. We define
 \[dW_t^\delta = dB_t + (1 + \delta)\nu_t dt \]
- Girsanov’s theorem gives us a precise formula for the measure of the "sets" E_δ.
- The main difficulty becomes proving that this perturbation is correlated with the gradient of the function.
- In other words that $\langle \int_0^1 \nu_t, \nu_1 \rangle$ is rather large, with high probability.

Fact
The process ν_t is a martingale.
Perturbing Fölmer’s drift

- **Idea:** instead of perturbing the point x, we define an adapted perturbation in the space of paths.
- Recall that $dW_t = dB_t + \nu_t dt$. We define

$$dW_t^\delta = dB_t + (1 + \delta)\nu_t dt$$

- Girsanov’s theorem gives us a precise formula for the measure of the "sets" E_δ.
- The main difficulty becomes proving that this perturbation is correlated with the gradient of the function.
- In other words that $\langle \int_0^1 \nu_t, \nu_1 \rangle$ is rather large, with high probability.

Fact

The process ν_t is a martingale.
Perturbing Fölmer’s drift

Idea: instead of perturbing the point x, we define an adapted perturbation in the space of paths.

Recall that $dW_t = dB_t + v_t dt$. We define

$$dW_t^\delta = dB_t + (1 + \delta)v_t dt$$

Girsanov’s theorem gives us a precise formula for the measure of the "sets" E_δ.

The main difficulty becomes proving that this perturbation is correlated with the gradient of the function.

In other words that $\langle \int_0^1 v_t, v_1 \rangle$ is rather large, with high probability.

Fact

The process v_t is a martingale.
Some other recent applications of stochastic calculus to geometric results

- Some new inequalities regarding diffusions with respect to convex potential functions (Borell ’00).
- New proofs of classical functional inequalities such as Shannon’s inequality, Talagrand’s transportation-entropy inequality and the Brascamp-Lieb inequalities (Lehec, 2011).
- Derivation of isoperimetric and concentration inequalities over convex bodies. In particular allows a reduction of the KLS conjecture to the variance conjecture, up to logarithmic factors (E. 2012).
- Bounds for norms of Log-concave random vectors (E. - Lehec 2013).
- New moderate and large deviation estimates for Gaussian fields (Ding-E.-Zhai 2013).
- A new class of rounding schemes for Grothendieck’s inequality (An ongoing work with A. Naor).
Some other recent applications of stochastic calculus to geometric results

- Some new inequalities regarding diffusions with respect to convex potential functions (Borell ’00).
- New proofs of classical functional inequalities such as Shannon’s inequality, Talagrand’s transportation-entropy inequality and the Brascamp-Lieb inequalities (Lehec, 2011).
- Derivation of isoperimetric and concentration inequalities over convex bodies. In particular allows a reduction of the KLS conjecture to the variance conjecture, up to logarithmic factors (E. 2012).
- Bounds for norms of Log-concave random vectors (E. - Lehec 2013).
- New moderate and large deviation estimates for Gaussian fields (Ding-E.-Zhai 2013).
- A new class of rounding schemes for Grothendieck’s inequality (An ongoing work with A. Naor).
Some other recent applications of stochastic calculus to geometric results

- Some new inequalities regarding diffusions with respect to convex potential functions (Borell ’00).
- New proofs of classical functional inequalities such as Shannon’s inequality, Talagrand’s transportation-entropy inequality and the Brascamp-Lieb inequalities (Lehec, 2011).
- Derivation of isoperimetric and concentration inequalities over convex bodies. In particular allows a reduction of the KLS conjecture to the variance conjecture, up to logarithmic factors (E. 2012).
- Bounds for norms of Log-concave random vectors (E. - Lehec 2013).
- New moderate and large deviation estimates for Gaussian fields (Ding-E.-Zhai 2013).
- A new class of rounding schemes for Grothendieck’s inequality (An ongoing work with A. Naor).
Some other recent applications of stochastic calculus to geometric results

- Some new inequalities regarding diffusions with respect to convex potential functions (Borell ’00).
- New proofs of classical functional inequalities such as Shannon’s inequality, Talagrand’s transportation-entropy inequality and the Brascamp-Lieb inequalities (Lehec, 2011).
- Derivation of isoperimetric and concentration inequalities over convex bodies. In particular allows a reduction of the KLS conjecture to the variance conjecture, up to logarithmic factors (E. 2012).
- Bounds for norms of Log-concave random vectors (E. - Lehec 2013).
- New moderate and large deviation estimates for Gaussian fields (Ding-E.-Zhai 2013).
- A new class of rounding schemes for Grothendieck’s inequality (An ongoing work with A. Naor).
Some other recent applications of stochastic calculus to geometric results

- Some new inequalities regarding diffusions with respect to convex potential functions (Borell ’00).
- New proofs of classical functional inequalities such as Shannon’s inequality, Talagrand’s transportation-entropy inequality and the Brascamp-Lieb inequalities (Lehec, 2011).
- Derivation of isoperimetric and concentration inequalities over convex bodies. In particular allows a reduction of the KLS conjecture to the variance conjecture, up to logarithmic factors (E. 2012).
- Bounds for norms of Log-concave random vectors (E. - Lehec 2013).
- New moderate and large deviation estimates for Gaussian fields (Ding-E.-Zhai 2013).
- A new class of rounding schemes for Grothendieck’s inequality (An ongoing work with A. Naor).
Some other recent applications of stochastic calculus to geometric results

- Some new inequalities regarding diffusions with respect to convex potential functions (Borell ’00).
- New proofs of classical functional inequalities such as Shannon’s inequality, Talagrand’s transportation-entropy inequality and the Brascamp-Lieb inequalities (Lehec, 2011).
- Derivation of isoperimetric and concentration inequalities over convex bodies. In particular allows a reduction of the KLS conjecture to the variance conjecture, up to logarithmic factors (E. 2012).
- Bounds for norms of Log-concave random vectors (E. - Lehec 2013).
- New moderate and large deviation estimates for Gaussian fields (Ding-E.-Zhai 2013).
- A new class of rounding schemes for Grothendieck’s inequality (An ongoing work with A. Naor).
Some advantage of a stochastic-calculus-based approach

- Unlike in the case of the semi-group approach where all the expressions represent expectations with respect to the diffusion, this approach allows a path-wise analysis.
- Itô’s formula allows us to do precise calculations (e.g., of expressions for derivatives with respect to time).
- As we saw above, other theorems like Dubins-Schwarz and Girsanov’s formula can also be useful.
- We can sometimes learn something by coupling our process with simpler, canonical processes.
- Allows us to define new kinds of perturbations, e.g., over the space of paths.
Some advantage of a stochastic-calculus-based approach

- Unlike in the case of the semi-group approach where all the expressions represent expectations with respect to the diffusion, this approach allows a path-wise analysis.
- Itô’s formula allows us to do precise calculations (e.g., of expressions for derivatives with respect to time).
- As we saw above, other theorems like Dubins-Schwarz and Girsanov’s formula can also be useful.
- We can sometimes learn something by coupling our process with simpler, canonical processes.
- Allows us to define new kinds of perturbations, e.g., over the space of paths.
Some advantage of a stochastic-calculus-based approach

- Unlike in the case of the semi-group approach where all the expressions represent expectations with respect to the diffusion, this approach allows a path-wise analysis.
- Itô’s formula allows us to do precise calculations (e.g., of expressions for derivatives with respect to time).
- As we saw above, other theorems like Dubins-Schwarz and Girsanov’s formula can also be useful.
- We can sometimes learn something by coupling our process with simpler, canonical processes.
- Allows us to define new kinds of perturbations, e.g., over the space of paths.
Some advantage of a stochastic-calculus-based approach

- Unlike in the case of the semi-group approach where all the expressions represent expectations with respect to the diffusion, this approach allows a path-wise analysis.
- Itô’s formula allows us to do precise calculations (e.g., of expressions for derivatives with respect to time).
- As we saw above, other theorems like Dubins-Schwarz and Girsanov’s formula can also be useful.
- We can sometimes learn something by coupling our process with simpler, canonical processes.
- Allows us to define new kinds of perturbations, e.g., over the space of paths.
Some advantage of a stochastic-calculus-based approach

- Unlike in the case of the semi-group approach where all the expressions represent expectations with respect to the diffusion, this approach allows a path-wise analysis.
- Itô’s formula allows us to do precise calculations (e.g., of expressions for derivatives with respect to time).
- As we saw above, other theorems like Dubins-Schwarz and Girsanov’s formula can also be useful.
- We can sometimes learn something by coupling our process with simpler, canonical processes.
- Allows us to define new kinds of perturbations, e.g., over the space of paths.
Thank you!