Recent progress in birational geometry

Caucher Birkar

Simons Foundation, New York, August 2017
Plan of talk

• Overview

• Pairs

• Examples of Fano’s

• Main results

• Work in progress

• Some ideas of proofs
Let X be a projective variety with "good" singularities. We say X is

- Fano if K_X is anti-ample, e.g. \mathbb{P}^n
- Calabi-Yau if K_X is trivial, e.g. abelian varieties
- canonically polarised if K_X is ample

Such varieties are very interesting in

- birational/algebraic geometry (e.g. see below; derived categories),
- moduli theory (e.g., see below; varieties of general type; Hodge theory),
- differential geometry (e.g., Kähler-Einstein metrics, stability),
- arithmetic geometry (e.g., existence and density of rational points),
- mathematical physics (e.g., string theory, mirror symmetry).
Birational geometry: overview

Let X be a projective variety with "good" singularities.
Birational geometry: overview

Let X be a projective variety with "good" singularities.

We say X is

\begin{align*}
\text{Fano} & \quad \text{if } K_X \text{ is anti-ample, eg } \mathbb{P}^n \\
\text{Calabi-Yau} & \quad \text{if } K_X \text{ is trivial, eg abelian varieties} \\
\text{canonically polarised} & \quad \text{if } K_X \text{ is ample}
\end{align*}
Let X be a projective variety with "good" singularities.

We say X is

- **Fano** if K_X is anti-ample, eg \mathbb{P}^n
- **Calabi-Yau** if K_X is trivial, eg abelian varieties
- **canonically polarised** if K_X is ample

Such varieties are very interesting in

- birational/algebraic geometry (eg see below; derived categories),
- moduli theory (eg, see below; varieties of general type; Hodge theory),
- differential geometry (eg, Kähler-Einstein metrics, stability),
- arithmetic geometry (eg, existence and density of rational points),
- mathematical physics (eg, string theory, mirror symmetry).
Birational geometry: overview

Let X be a projective variety with "good" singularities.

We say X is

\[
\begin{cases}
 \text{Fano} & \text{if } K_X \text{ is anti-ample, eg } \mathbb{P}^n \\
 \text{Calabi-Yau} & \text{if } K_X \text{ is trivial, eg abelian varieties} \\
 \text{canonically polarised} & \text{if } K_X \text{ is ample}
\end{cases}
\]

Such varieties are very interesting in

- birational/algebraic geometry (eg see below; derived categories),
- moduli theory (eg, see below; varieties of general type; Hodge theory),
- differential geometry (eg, Kähler-Einstein metrics, stability),
- arithmetic geometry (eg, existence and density of rational points),
- mathematical physics (eg, string theory, mirror symmetry).
Let X be a projective variety with "good" singularities.

We say X is

\[
\begin{cases}
Fano & \text{if } K_X \text{ is anti-ample, eg } \mathbb{P}^n \\
Calabi-Yau & \text{if } K_X \text{ is trivial, eg abelian varieties} \\
canonically polarised & \text{if } K_X \text{ is ample}
\end{cases}
\]

Such varieties are very interesting in

- birational/algebraic geometry (eg see below; derived categories),
- moduli theory (eg, see below; varieties of general type; Hodge theory),
Let X be a projective variety with "good" singularities.

We say X is

\begin{align*}
\begin{cases}
\text{Fano} & \text{if } K_X \text{ is anti-ample, eg } \mathbb{P}^n \\
\text{Calabi-Yau} & \text{if } K_X \text{ is trivial, eg abelian varieties} \\
\text{canonically polarised} & \text{if } K_X \text{ is ample}
\end{cases}
\end{align*}

Such varieties are very interesting in

- birational/algebraic geometry (eg see below; derived categories),
- moduli theory (eg, see below; varieties of general type; Hodge theory),
- differential geometry (eg, Kähler-Einstein metrics, stability),
Birational geometry: overview

Let X be a projective variety with "good" singularities.

We say X is

\[
\begin{cases}
\text{Fano} & \text{if } K_X \text{ is anti-ample, eg } \mathbb{P}^n \\
\text{Calabi-Yau} & \text{if } K_X \text{ is trivial, eg abelian varieties} \\
\text{canonically polarised} & \text{if } K_X \text{ is ample}
\end{cases}
\]

Such varieties are very interesting in

- birational/algebraic geometry (eg see below; derived categories),
- moduli theory (eg, see below; varieties of general type; Hodge theory),
- differential geometry (eg, Kähler-Einstein metrics, stability),
- arithmetic geometry (eg, existence and density of rational points),
Let \(X \) be a projective variety with "good" singularities.

We say \(X \) is
\[
\begin{aligned}
\text{Fano} & \quad \text{if } K_X \text{ is anti-ample, eg } \mathbb{P}^n \\
\text{Calabi-Yau} & \quad \text{if } K_X \text{ is trivial, eg abelian varieties} \\
\text{canonically polarised} & \quad \text{if } K_X \text{ is ample}
\end{aligned}
\]

Such varieties are very interesting in

- birational/algebraic geometry (eg see below; derived categories),
- moduli theory (eg, see below; varieties of general type; Hodge theory),
- differential geometry (eg, Kähler-Einstein metrics, stability),
- arithmetic geometry (eg, existence and density of rational points),
- mathematical physics (eg, string theory, mirror symmetry).
Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

- Y admits a Fano fibration,
- Y admits a Calabi-Yau fibration,
- Y is canonically polarised.

Known cases:
- Dimension 2: (Castelnuovo, Enriques)(Zariski, Kodaira, etc) 1900,
- Dimension 3: (Kawamata, Kollár, Miyaoka, Mori, Reid, Shokurov)(Fano, Hironaka, Iitaka, Iskovskikh-Manin, etc) 1970's-1990's,
- Any dimension for W of general type (BCHM=B-Cascini-Hacon-McKernan, after Shokurov, etc) 2006.
Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

Y admits a Fano fibration, or
Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

- Y admits a Fano fibration, or
- Y admits a Calabi-Yau fibration, or
Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

- Y admits a Fano fibration, or
- Y admits a Calabi-Yau fibration, or
- Y is canonically polarised.

Known cases:
- dimension 2: (Castelnuovo, Enriques)(Zariski, Kodaira, etc) 1900,
- dimension 3: (Kawamata, Kollár, Miyaoka, Mori, Reid, Shokurov)(Fano, Hironaka, Iitaka, Iskovskikh-Manin, etc) 1970's-1990's,
- any dimension for W of general type (BCHM=B-Cascini-Hacon-McKernan, after Shokurov, etc) 2006.
Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

- Y admits a Fano fibration, or
- Y admits a Calabi-Yau fibration, or
- Y is canonically polarised.

Known cases:

- Dimension 2: (Castelnuovo, Enriques)(Zariski, Kodaira, etc) 1900,
- Dimension 3: (Kawamata, Kollár, Miyaoka, Mori, Reid, Shokurov)(Fano, Hironaka, Iitaka, Iskovskikh-Manin, etc) 1970’s-1990’s,
- Any dimension for W of general type (BCHM=B-Cascini-Hacon-McKernan, after Shokurov, etc) 2006.
Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

- Y admits a Fano fibration, or
- Y admits a Calabi-Yau fibration, or
- Y is canonically polarised.

Known cases:

- dimension 2: (Castelnuovo, Enriques)(Zariski, Kodaira, etc) 1900,
Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

- Y admits a Fano fibration, or
- Y admits a Calabi-Yau fibration, or
- Y is canonically polarised.

Known cases:

- dimension 2: (Castelnuovo, Enriques)(Zariski, Kodaira, etc) 1900,
- dimension 3 (Kawamata, Kollár, Miyaoka, Mori, Reid, Shokurov)(Fano, Hironaka, Iitaka, Iskovskikh-Manin, etc) 1970’s-1990’s,
Birational geometry: overview

Conjecture (Minimal model and abundance)

Each variety W is birational to a projective variety Y with good singularities such that either

- Y admits a Fano fibration, or
- Y admits a Calabi-Yau fibration, or
- Y is canonically polarised.

Known cases:

- dimension 2: (Castelnuovo, Enriques)(Zariski, Kodaira, etc) 1900,
- dimension 3 (Kawamata, Kollár, Miyaoka, Mori, Reid, Shokurov)(Fano, Hironaka, Iitaka, Iskovskikh-Manin, etc) 1970’s-1990’s,
- any dimension for W of general type (BCHM=B-Cascini-Hacon-McKernan, after Shokurov, etc) 2006.
Birational geometry: overview – MMP

How to find such Y?

The required contractions [Kawamata, Shokurov] and flips [BCHM] exist. Important ingredient: the C-algebra $R = \bigoplus_{m \geq 0} H^0(mK_W)$ is finitely generated [BCHM].

Conjecture

• Termination: the program stops after finitely many steps
• Abundance: if K_Y not ample, then Y is fibred by Fano's and CY's.
Birational geometry: overview – MMP

How to find such Y?

Run the MMP giving a sequence of birational transformations

$$W = W_1 \xrightarrow{\text{div contraction}} W_2 \xrightarrow{\text{flip}} W_3 \xrightarrow{} \cdots \xrightarrow{} W_t = Y$$
How to find such Y?

Run the MMP giving a sequence of birational transformations

$$W = W_1 \xrightarrow{\text{div contraction}} W_2 \xrightarrow{\text{flip}} W_3 \xrightarrow{} \cdots \xrightarrow{} W_t = Y$$

The required contractions [Kawamata, Shokurov] and flips [BCHM] exist.
How to find such \(Y \)?

Run the MMP giving a sequence of birational transformations

\[
W = W_1 \xrightarrow{\text{div contraction}} W_2 \xrightarrow{\text{flip}} W_3 \rightarrow \cdots \rightarrow W_t = Y
\]

The required contractions [Kawamata, Shokurov] and flips [BCHM] exist.

Important ingredient: the \(\mathbb{C} \)-algebra

\[
R = \bigoplus_{m \geq 0} H^0(mK_W)
\]

is finitely generated [BCHM].
Birational geometry: overview – MMP

How to find such Y?

Run the MMP giving a sequence of birational transformations

$$W = W_1 \xrightarrow{\text{div contraction}} W_2 \xrightarrow{\text{flip}} W_3 \xrightarrow{} \cdots \xrightarrow{} W_t = Y$$

The required contractions [Kawamata, Shokurov] and flips [BCHM] exist.

Important ingredient: the \mathbb{C}-algebra

$$R = \bigoplus_{m \geq 0} H^0(mK_W)$$

is finitely generated [BCHM].

Conjecture

- **Termination:** *the program stops after finitely many steps*
- **Abundance:** *if K_Y not ample, then Y is fibred by Fano’s and CY’s.*
Birational classification of varieties (including MMP) involves many interesting problems/topics.

Show diagram.
Singularities of pairs

A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\). Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \rightarrow X\) and writing \(K_W + B_W = \phi^*(K_X + B)\). The larger the coefficients of \(B_W\), the worse the singularities. Singularities are “good” if every coefficient of \(B_W\) is \(\leq 1\) (or \(< 1\)). \((X, B)\) is \(\epsilon\)-lc if every coefficient of \(B_W\) is \(\leq 1 - \epsilon\).

Example: \(X\) a smooth variety and \(B\) a simple normal crossing divisor.

Example: \(X\) a smooth surface and \(B\) a nodal curve.

Bad example: \(X\) a smooth surface and \(B\) a cuspidal curve.
A **pair** \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).
Singularities of pairs

A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).

Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \rightarrow X\) and writing \(K_W + B_W = \phi^*(K_X + B)\).
A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).

Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \to X\) and writing \(K_W + B_W = \phi^*(K_X + B)\).

The larger the coefficients of \(B_W\), the worse the singularities.
Singularities of pairs

A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).

Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \to X\) and writing \(K_W + B_W = \phi^*(K_X + B)\).

The larger the coefficients of \(B_W\), the worse the singularities.

Singularities are "good" if every coefficient of \(B_W\) is \(\leq 1\) (or \(< 1\)).

Example: \(X\) a smooth variety and \(B\) a simple normal crossing divisor.

Example: \(X\) a smooth surface and \(B\) a nodal curve.

Bad example: \(X\) a smooth surface and \(B\) a cuspidal curve.
Singularities of pairs

A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).

Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \to X\) and writing \(K_W + B_W = \phi^*(K_X + B)\).

The larger the coefficients of \(B_W\), the worse the singularities.

Singularities are "good" if every coefficient of \(B_W\) is \(\leq 1\) (or \(< 1\)).

\((X, B)\) is \(\epsilon\)-lc if every coefficient of \(B_W\) is \(\leq 1 - \epsilon\).
A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).

Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \to X\) and writing \(K_W + B_W = \phi^*(K_X + B)\).

The larger the coefficients of \(B_W\), the worse the singularities.

Singularities are "good" if every coefficient of \(B_W\) is \(\leq 1\) (or \(< 1\)).

\((X, B)\) is \(\epsilon\)-lc if every coefficient of \(B_W\) is \(\leq 1 - \epsilon\).

Example: \(X\) a smooth variety and \(B\) a simple normal crossing divisor.
A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).

Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \to X\) and writing \(K_W + B_W = \phi^*(K_X + B)\).

The larger the coefficients of \(B_W\), the worse the singularities.

Singularities are "good" if every coefficient of \(B_W\) is \(\leq 1\) (or \(< 1\)).

\((X, B)\) is \(\epsilon\)-lc if every coefficient of \(B_W\) is \(\leq 1 - \epsilon\).

Example: \(X\) a smooth variety and \(B\) a simple normal crossing divisor.

Example: \(X\) a smooth surface and \(B\) a nodal curve.
Singularities of pairs

A pair \((X, B)\) consists of a normal variety \(X\) and a boundary divisor \(B\) with coefficients in \([0, 1]\).

Singularities of \((X, B)\) are defined by taking a log resolution \(\phi: W \to X\) and writing \(K_W + B_W = \phi^*(K_X + B)\).

The larger the coefficients of \(B_W\), the worse the singularities.

Singularities are "good" if every coefficient of \(B_W\) is \(\leq 1\) (or \(< 1\)).

\((X, B)\) is \(\varepsilon\)-lc if every coefficient of \(B_W\) is \(\leq 1 - \varepsilon\).

Example: \(X\) a smooth variety and \(B\) a simple normal crossing divisor.

Example: \(X\) a smooth surface and \(B\) a nodal curve.

Bad example: \(X\) a smooth surface and \(B\) a cuspidal curve.
Example of Fano’s

For $n \geq 2$ consider $E \subset W_n \rightarrow X_n$ where X_n is the cone over rational curve of deg n, and W_n is blowup of vertex, E is the exceptional curve. W_n = projective bundle of $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)$. E is the section given by the summand $\mathcal{O}_{\mathbb{P}^1}(-n)$. X_n is obtained from W_n by contracting E. $K_{W_n} + n - 2n E = f^* K_{X_n}$. X_n is $2n$-lc Fano (as $n \rightarrow \infty$, singularities get deeper).

\{X_n | n \in \mathbb{N}\} is not a bounded family.
Example of Fano’s

For $n \geq 2$ consider

$$E \subset W_n \xrightarrow{f} X_n$$

where X_n is the cone over rational curve of deg n, and W_n is the blowup of the vertex, E is the exceptional curve. W_n is the projective bundle of $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)$. E is the section given by the summand $\mathcal{O}_{\mathbb{P}^1}(-n)$. X_n is obtained from W_n by contracting E. $K_{W_n} + n - 2nE = f^* K_{X_n}$. X_n is $2n$-lc Fano (as $n \to \infty$, singularities get deeper).

$\{X_n \mid n \in \mathbb{N}\}$ is not a bounded family.
Example of Fano’s

For $n \geq 2$ consider

$$E \subset W_n \xrightarrow{f} X_n$$

where X_n is the cone over rational curve of deg n, and W_n is blowup of vertex, E is the exceptional curve.
Example of Fano’s

For $n \geq 2$ consider

$$E \subset W_n \xrightarrow{f} X_n$$

where X_n is the cone over rational curve of deg n, and W_n is blowup of vertex, E is the exceptional curve.

$W_n = \text{projective bundle of } O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1}(-n)$.

For $n \geq 2$ consider

$$\begin{align*}
E & \subset W_n \xrightarrow{f} X_n \\
\downarrow & \\
\mathbb{P}^1 &
\end{align*}$$

where X_n is the cone over rational curve of deg n, and W_n is blowup of vertex, E is the exceptional curve.

$W_n =$ projective bundle of $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)$.

E is the section given by the summand $\mathcal{O}_{\mathbb{P}^1}(-n)$.

For $n \geq 2$ consider

\[E \subset W_n \xrightarrow{f} X_n \]

where X_n is the cone over rational curve of deg n, and W_n is blowup of vertex, E is the exceptional curve.

$W_n =$ projective bundle of $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)$.

E is the section given by the summand $\mathcal{O}_{\mathbb{P}^1}(-n)$.

X_n is obtained from W_n by contracting E.
For $n \geq 2$ consider

$$
E \subset W_n \xrightarrow{f} X_n
$$

where X_n is the cone over rational curve of deg n, and W_n is blowup of vertex, E is the exceptional curve.

$W_n =$ projective bundle of $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)$.

E is the section given by the summand $\mathcal{O}_{\mathbb{P}^1}(-n)$.

X_n is obtained from W_n by contracting E.

$$
K_{W_n} + \frac{n-2}{n} E = f^* K_{X_n}.
$$
For \(n \geq 2 \) consider

\[
E \subset W_n \xrightarrow{f} X_n
\]

where \(X_n \) is the cone over rational curve of deg \(n \), and \(W_n \) is blowup of vertex, \(E \) is the exceptional curve.

\[
W_n = \text{projective bundle of } \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n).
\]

\(E \) is the section given by the summand \(\mathcal{O}_{\mathbb{P}^1}(-n) \).

\(X_n \) is obtained from \(W_n \) by contracting \(E \).

\[
K_{W_n} + \frac{n-2}{n} E = f^* K_{X_n}.
\]

\(X_n \) is \(\frac{2}{n} \)-lc Fano \hspace{1cm} \text{(as } n \to \infty, \text{ singularities get deeper)}.\]
For $n \geq 2$ consider

$$E \subset W_n \xrightarrow{f} X_n$$

where X_n is the cone over rational curve of deg n, and W_n is blowup of vertex, E is the exceptional curve.

$W_n =$ projective bundle of $\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-n)$.

E is the section given by the summand $\mathcal{O}_{\mathbb{P}^1}(-n)$.

X_n is obtained from W_n by contracting E.

$$K_{W_n} + \frac{n-2}{n} E = f^* K_{X_n}.$$

X_n is $\frac{2}{n}$-lc Fano (as $n \to \infty$, singularities get deeper).

$\{X_n \mid n \in \mathbb{N}\}$ is not a bounded family.
Main results: Fano varieties

Theorem (Boundedness of complements, \[B, 2016\])

For each \(d\) there is \(m\) such that if \(X\) is a klt Fano of dimension \(d\) then
\[
\text{h}^0(−mK_X) \neq 0.
\]
Moreover, \(|−mK_X|\) contains an element with good singularities.

This was conjectured by Shokurov (mid 1990's, originates in 1970's).
Proved in dimension 2 by Shokurov.
Partially proved in dimension 3 by Prokhorov-Shokurov.

Example:
\(X\) toric Fano, then can take \(m = 1\).

Theorem (Effective birationality, \[B, 2016\])

For each \(d, \epsilon > 0\) there is \(m\) such that if \(X\) is \(\epsilon\)-lc Fano of dimension \(d\), then
\[
|−mK_X|\ defines a birational map.
\]
Main results: Fano varieties

Theorem (Boundedness of complements, [B, 2016])

For each d there is m such that if X is a klt Fano of dimension d then $h^0(-mK_X) \neq 0$.

Moreover, $|−mK_X|$ contains an element with good singularities.

This was conjectured by Shokurov (mid 1990's, originates in 1970's).

Proved in dimension 2 by Shokurov.

Partially proved in dimension 3 by Prokhorov-Shokurov.

Example: X toric Fano, then can take $m = 1$.

Theorem (Effective birationality, [B, 2016])

For each $d, \epsilon > 0$ there is m such that if X is ϵ-lc Fano of dimension d, then $|−mK_X|$ defines a birational map.
Main results: Fano varieties

Theorem (Boundedness of complements, [B, 2016])

For each d there is m such that if X is a klt Fano of dimension d then $h^0(-mK_X) \neq 0$. Moreover, $|-mK_X|$ contains an element with good singularities.
Main results: Fano varieties

Theorem (Boundedness of complements, [B, 2016])

For each d there is m such that if X is a klt Fano of dimension d then $h^0(-mK_X) \neq 0$. Moreover, $|−mK_X|$ contains an element with good singularities.

This was conjectured by Shokurov (mid 1990’s, originates in 1970’s).
Main results: Fano varieties

Theorem (Boundedness of complements, [B, 2016])

For each d there is m such that if X is a klt Fano of dimension d then $h^0(-mK_X) \neq 0$. Moreover, $| - mK_X|$ contains an element with good singularities.

This was conjectured by Shokurov (mid 1990’s, originates in 1970’s).

Proved in dimension 2 by Shokurov.
Main results: Fano varieties

Theorem (Boundedness of complements, [B, 2016])

For each d there is m such that if X is a klt Fano of dimension d then $h^0(-mK_X) \neq 0$. Moreover, $| - mK_X|$ contains an element with good singularities.

This was conjectured by Shokurov (mid 1990’s, originates in 1970’s).

Proved in dimension 2 by Shokurov.

Partially proved in dimension 3 by Prokhorov-Shokurov.
Main results: Fano varieties

Theorem (Boundedness of complements, [B, 2016])

For each d there is m such that if X is a klt Fano of dimension d then $h^0(-mK_X) \neq 0$. Moreover, $|-mK_X|$ contains an element with good singularities.

This was conjectured by Shokurov (mid 1990’s, originates in 1970’s).

Proved in dimension 2 by Shokurov.

Partially proved in dimension 3 by Prokhorov-Shokurov.

Example: X toric Fano, then can take $m = 1$.
Main results: Fano varieties

Theorem (Boundedness of complements, [B, 2016])

For each d there is m such that if X is a klt Fano of dimension d then $h^0(-mK_X) \neq 0$. Moreover, $|-mK_X|$ contains an element with good singularities.

This was conjectured by Shokurov (mid 1990’s, originates in 1970’s).

Proved in dimension 2 by Shokurov.

Partially proved in dimension 3 by Prokhorov-Shokurov.

Example: X toric Fano, then can take $m = 1$.

Theorem (Effective birationality, [B, 2016])

For each $d, \epsilon > 0$ there is m such that if X is ϵ-lc Fano of dimension d, then $|-mK_X|$ defines a birational map.
Theorem (Boundedness of singular Fano’s, [B, 2016])

For each $d, \epsilon > 0$ the set

$$\{ X \mid X \ \text{\(\epsilon\)-lc Fano of dimension } d \}$$

is a bounded family.
Theorem (Boundedness of singular Fano’s, [B, 2016])

For each $d, \epsilon > 0$ the set

$$\{ X \mid X \, \text{ϵ-lc Fano of dimension} \, d \}$$

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).
Main results: Fano varieties

Theorem (Boundedness of singular Fano’s, [B, 2016])

For each d, $\epsilon > 0$ the set

$$\{ X \mid X \text{ ϵ-lc Fano of dimension } d \}$$

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).

Answers Serre’s question on Cremona groups [Prokhorov-Shramov].
Main results: Fano varieties

Theorem (Boundedness of singular Fano’s, [B, 2016])

For each $d, \epsilon > 0$ *the set*

$$\{ X \mid X \; \epsilon\text{-lc Fano of dimension} \; d \}$$

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).

Answers Serre’s question on Cremona groups [Prokhorov-Shramov].

Known partial cases:

• $d = 2$: Alexeev (reproved by Alexeev-Mori),
• toric case: Borisov brothers,
• smooth case: Kollár-Miyaoka-Mori, Nadel, (Fano),
• $d = 3$ and $\epsilon \geq 1$: Kawamata, Kollár-Miyaoka-Mori-Takagi,
• special case: Hacon-McKernan-Xu.
Theorem (Boundedness of singular Fano’s, [B, 2016])

For each \(d, \epsilon > 0 \) the set

\[\{ X \mid X \text{ } \epsilon\text{-lc Fano of dimension } d \} \]

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).

Answers Serre’s question on Cremona groups [Prokhorov-Shramov].

Known partial cases:

- \(d = 2 \): Alexeev (reproved by Alexeev-Mori),
Main results: Fano varieties

Theorem (Boundedness of singular Fano’s, [B, 2016])

For each $d, \epsilon > 0$ the set

$$\{ X \mid X \ \text{\epsilon-lc Fano of dimension } d \}$$

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).

Answers Serre’s question on Cremona groups [Prokhorov-Shramov].

Known partial cases:

- $d = 2$: Alexeev (reproved by Alexeev-Mori),
- toric case: Borisov brothers,
Main results: Fano varieties

Theorem (Boundedness of singular Fano’s, [B, 2016])

For each \(d, \epsilon > 0 \) the set

\[
\{ X \mid X \ \epsilon\text{-lc Fano of dimension } d \}
\]

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).

Answers Serre’s question on Cremona groups [Prokhorov-Shramov].

Known partial cases:

- \(d = 2 \): Alexeev (reproved by Alexeev-Mori),
- toric case: Borisov brothers,
- smooth case: Kollár-Miyaoka-Mori, Nadel, (Fano),
Main results: Fano varieties

Theorem (Boundedness of singular Fano’s, [B, 2016])

For each \(d \), \(\epsilon > 0 \) the set

\[
\{ X \mid X \ \text{\(\epsilon \)-lc Fano of dimension \(d \)} \}
\]

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).

Answers Serre’s question on Cremona groups [Prokhorov-Shramov].

Known partial cases:

- \(d = 2 \): Alexeev (reproved by Alexeev-Mori),
- toric case: Borisov brothers,
- smooth case: Kollár-Miyaoka-Mori, Nadel, (Fano),
- \(d = 3 \) and \(\epsilon \geq 1 \): Kawamata, Kollár-Miyaoka-Mori-Takagi,
Main results: Fano varieties

Theorem (Boundedness of singular Fano’s, [B, 2016])

For each $d, \epsilon > 0$ the set

$$\{ X \mid X \ \epsilon\text{-lc Fano of dimension } d \}$$

is a bounded family.

Known as Borisov-Alexeev-Borisov conjecture (from early 1990’s).

Answers Serre’s question on Cremona groups [Prokhorov-Shramov].

Known partial cases:

- $d = 2$: Alexeev (reproved by Alexeev-Mori),
- toric case: Borisov brothers,
- smooth case: Kollár-Miyaoka-Mori, Nadel, (Fano),
- $d = 3$ and $\epsilon \geq 1$: Kawamata, Kollár-Miyaoka-Mori-Takagi,
- special case: Hacon-McKernan-Xu.
Main results: singularities

For a pair (X, B) and R-divisor A define $\text{lct}(X, B, |A|_R) = \sup\{s | (X, B+sN) \text{ is lc for every } 0 \leq N \sim R_A\}$.

Theorem (Boundedness of lc thresholds [B, 2016])

For each d, r, $\epsilon > 0$ there is $t > 0$ such that if
- (X, B) is projective ϵ-lc of dimension d,
- A is very ample with $A^d \leq r$, and
- $A-B$ is ample,
then $\text{lct}(X, B, |A|_R) \geq t$.

In particular, if $A \sim R M + L$ were M, $L \geq 0$, then $\text{lct}(X, B, |M|_R) \geq t$.

Proof of BAB relies on the theorem. It implies a conjecture of Ambro as well.
Main results: singularities

For a pair \((X, B)\) and \(\mathbb{R}\)-divisor \(A\) define

\[
\text{lct}(X, B, |A|_\mathbb{R}) = \sup\{s \mid (X, B + sN) \text{ is lc for every } 0 \leq N \sim_\mathbb{R} A\}
\]
Main results: singularities

For a pair \((X, B)\) and \(\mathbb{R}\)-divisor \(A\) define
\[
lct(X, B, |A|_\mathbb{R}) = \sup\{s \mid (X, B + sN) \text{ is lc for every } 0 \leq N \sim_\mathbb{R} A\}
\]

Theorem (Boundedness of lc thresholds [B, 2016])

For each \(d, r, \epsilon > 0\) there is \(t > 0\) such that if
- \((X, B)\) is projective \(\epsilon\)-lc of dimension \(d\),
- \(A\) is very ample with \(A^d \leq r\), and
- \(A - B\) is ample,
then
\[
lct(X, B, |A|_\mathbb{R}) \geq t.
\]
Main results: singularities

For a pair \((X, B)\) and \(\mathbb{R}\)-divisor \(A\) define

\[
lct(X, B, |A|_\mathbb{R}) = \sup\{s \mid (X, B + sN) \text{ is lc for every } 0 \leq N \sim_{\mathbb{R}} A\}
\]

Theorem (Boundedness of lc thresholds [B, 2016])

For each \(d, r, \epsilon > 0\) there is \(t > 0\) such that if
- \((X, B)\) is projective \(\epsilon\)-lc of dimension \(d\),
- \(A\) is very ample with \(A^d \leq r\), and
- \(A - B\) is ample,

then

\[
lct(X, B, |A|_\mathbb{R}) \geq t.
\]

In particular, if \(A \sim_{\mathbb{R}} M + L\) were \(M, L \geq 0\), then

\[
lct(X, B, |M|_\mathbb{R}) \geq t.
\]

Proof of BAB relies on the theorem.
Main results: singularities

For a pair \((X, B)\) and \(\mathbb{R}\)-divisor \(A\) define

\[
lct(X, B, |A|_\mathbb{R}) = \sup \{ s \mid (X, B + sN) \text{ is lc for every } 0 \leq N \sim \mathbb{R} A \}\]

Theorem (Boundedness of lc thresholds [B, 2016])

For each \(d, r, \epsilon > 0\) there is \(t > 0\) such that if

- \((X, B)\) is projective \(\epsilon\)-lc of dimension \(d\),
- \(A\) is very ample with \(A^d \leq r\), and
- \(A - B\) is ample,

then

\[
lct(X, B, |A|_\mathbb{R}) \geq t.
\]

In particular, if \(A \sim \mathbb{R} M + L\) were \(M, L \geq 0\), then

\[
lct(X, B, |M|_\mathbb{R}) \geq t.
\]

Proof of BAB relies on the theorem. It implies a conjecture of Ambro as well.
Theorem (Mori-Prokhorov)

Let X be a 3-fold with terminal sing, $f : X \to Z$ a Mori fibre space;

- if Z is a surface, then Z has canonical sing;
- if Z is a curve, then multiplicities of fibres of f are bounded.

Conjecture (Mc Kernan)

For each $d, \epsilon > 0$, there is $\delta > 0$ such that if X is ϵ-lc of dim d and $f : X \to Z$ is a Mori fibre space, then Z is δ-lc.
Theorem (Mori-Prokhorov)

Let X be a 3-fold with terminal sing, $f : X \to Z$ a Mori fibre space;

• if Z is a surface, then Z has canonical sing;
• if Z is a curve, then multiplicities of fibres of f are bounded.

Conjecture (MCKernan)

For each $d, \epsilon > 0$, there is $\delta > 0$ such that if X is ϵ-lc of dim d and $f : X \to Z$ is a Mori fibre space,
then Z is δ-lc.
Theorem (Mori-Prokhorov)

Let X be a 3-fold with terminal sing, $f : X \rightarrow Z$ a Mori fibre space;

- if Z is a surface, then Z has canonical sing;
Theorem (Mori-Prokhorov)

Let X be a 3-fold with terminal sing, $f : X \to Z$ a Mori fibre space;

- if Z is a surface, then Z has canonical sing;
- if Z is a curve, then multiplicities of fibres of f are bounded.
Theorem (Mori-Prokhorov)

Let X be a 3-fold with terminal sing, $f: X \to Z$ a Mori fibre space;

- if Z is a surface, then Z has canonical sing;
- if Z is a curve, then multiplicities of fibres of f are bounded.

Conjecture (McKernan)

For each $d, \epsilon > 0$, there is $\delta > 0$ such that if X is ϵ-lc of dim d and $f: X \to Z$ is a Mori fibre space, then Z is δ-lc.
Conjecture (Shokurov)

For each $d, \epsilon > 0$, there is $\delta > 0$ such that if

- (X, B) is ϵ-lc of dim d, $f: X \to Z$ is a contraction,
- $K_X + B \equiv 0$ on Z,
- $-K_X$ is big on Z,

then we can write

$$K_X + B \sim R f^*(K_Z + B_Z + M_Z)$$

such that $(Z, B_Z + M_Z)$ is δ-lc.

Theorem (B, 2012)

Shokurov conjecture holds if $(F, \text{Supp } B|_F)$ belongs to a bounded family where F is general fibre.

Note: BAB implies F belongs to a bounded family.
Conjecture (Shokurov)

For each $d, \epsilon > 0$, there is $\delta > 0$ such that if

- (X, B) is ϵ-lc of dim d, $f : X \to Z$ is a contraction,
- $K_X + B \equiv 0/Z$, $-K_X$ is big/Z,
Conjecture (Shokurov)

For each $d, \epsilon > 0$, there is $\delta > 0$ such that if

- (X, B) is ϵ-lc of dim d, $f : X \to Z$ is a contraction,
- $K_X + B \equiv 0/Z$, $-K_X$ is big/Z,

then we can write

$$K_X + B \sim_{\mathbb{R}} f^*(K_Z + B_Z + M_Z)$$

such that $(Z, B_Z + M_Z)$ is δ-lc.
Conjecture (Shokurov)

For each \(d, \epsilon > 0\), there is \(\delta > 0\) such that if

- \((X, B)\) is \(\epsilon\)-lc of dim \(d\), \(f: X \to Z\) is a contraction,
- \(K_X + B \equiv 0/\mathbb{Z}\), \(-K_X\) is big/\(\mathbb{Z}\),

then we can write

\[
K_X + B \sim_{\mathbb{R}} f^*(K_Z + B_Z + M_Z)
\]

such that \((Z, B_Z + M_Z)\) is \(\delta\)-lc.

Theorem (B, 2012)

Shokurov conjecture holds if \((F, \text{Supp } B|_F)\) belongs to a bounded family where \(F\) is general fibre.
Conjecture (Shokurov)

For each $d, \epsilon > 0$, there is $\delta > 0$ such that if

- (X, B) is ϵ-lc of dim d, $f : X \to Z$ is a contraction,
- $K_X + B \equiv 0/Z$, $-K_X$ is big/Z,

then we can write

$$K_X + B \sim_{\mathbb{R}} f^*(K_Z + B_Z + M_Z)$$

such that $(Z, B_Z + M_Z)$ is δ-lc.

Theorem (B, 2012)

Shokurov conjecture holds if $(F, \text{Supp } B|_F)$ belongs to a bounded family where F is general fibre.

Note: BAB implies F belongs to a bounded family.
Complements

Let X be a Fano variety. An m-complement is of the form $K_X + \Delta$ where (X, Δ) has lc singularities, $m(K_X + \Delta) \sim 0$.

Note that $m\Delta \in |-mK_X|$.

Example: $X = \mathbb{P}^1$, $\Delta = x_1 + x_2$ with x_i distinct points, then $K_X + \Delta$ is a 1-complement.

Example: $X \subset \mathbb{P}^3$ a cubic surface, Δ a general hyperplane section, then $K_X + \Delta$ is a 1-complement.
Let X be a Fano variety.
Let X be a Fano variety.

An m-complement is of the form $K_X + \Delta$ where

$\{(X, \Delta) \text{ has lc singularities}\}$

$\{m(K_X + \Delta) \sim 0\}$

Note that $m\Delta \in |-mK_X|$.

Example: $X = \mathbb{P}^1$, $\Delta = x_1 + x_2$ with x_i distinct points, then $K_X + \Delta$ is a 1-complement.

Example: $X \subset \mathbb{P}^3$ a cubic surface, Δ a general hyperplane section, then $K_X + \Delta$ is a 1-complement.
Let X be a Fano variety.

An \textbf{m-complement} is of the form $K_X + \Delta$ where

\[
\begin{cases}
(X, \Delta) \text{ has lc singularities}, \\
m(K_X + \Delta) \sim 0
\end{cases}
\]
Complements

Let X be a Fano variety.

An m-complement is of the form $K_X + \Delta$ where

\[
\begin{aligned}
(X, \Delta) &\text{ has lc singularities}, \\
m(K_X + \Delta) &\sim 0
\end{aligned}
\]

Note that $m\Delta \in |-mK_X|$.

Example: $X = \mathbb{P}^1$, $\Delta = x_1 + x_2$ with x_i distinct points, then $K_X + \Delta$ is a 1-complement.

Example: $X \subset \mathbb{P}^3$ a cubic surface, Δ a general hyperplane section, then $K_X + \Delta$ is a 1-complement.
Let X be a Fano variety.

An m-complement is of the form $K_X + \Delta$ where
\[
\begin{cases}
(X, \Delta) \text{ has lc singularities}, \\
m(K_X + \Delta) \sim 0
\end{cases}
\]

Note that $m\Delta \in \mid -mK_X \mid$.

Example: $X = \mathbb{P}^1$, $\Delta = x_1 + x_2$ with x_i distinct points, then $K_X + \Delta$ is a 1-complement.
Let X be a Fano variety.

An m-complement is of the form $K_X + \Delta$ where

\[
\begin{align*}
(X, \Delta) & \text{ has lc singularities,} \\
m(K_X + \Delta) & \sim 0
\end{align*}
\]

Note that $m\Delta \in |-mK_X|$.

Example: $X = \mathbb{P}^1$, $\Delta = x_1 + x_2$ with x_i distinct points, then $K_X + \Delta$ is a 1-complement.

Example: $X \subset \mathbb{P}^3$ a cubic surface, Δ a general hyperplane section, then $K_X + \Delta$ is a 1-complement.
Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:

We can change X birationally and find B such that (X, B) has lc singularities and either

1. B has a component S with coefficient 1 and $-K_{X} + B$ ample,
2. $K_{X} + B \equiv 0$ along fibres of a Fano fibration $f : X \rightarrow Z$,
3. X is ϵ-lc for fixed $\epsilon > 0$.

These cases require very different inductive treatment.

Case (1): apply divisorial adjunction to define $K_{S} + B_{S} = (K_{X} + B)_{|S}$.
Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:
Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:

We can change X birationally and find B such that (X, B) has lc singularities and either

1. B has a component S with coefficient 1 and $- (K_X + B)|_S$ ample,
2. $K_X + B \equiv 0$ along fibres of a Fano fibration $f : X \to Z$,
3. X is ϵ-lc for fixed $\epsilon > 0$.

These cases require very different inductive treatment.

Case (1): apply divisorial adjunction to define $K_S + B_S = (K_X + B)|_S$.
Complements and effective birationality

Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:

We can change X birationally and find B such that (X, B) has lc singularities and either

(1) B has a component S with coefficient 1 and $-(K_X + B)$ ample, or
Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:

We can change X birationally and find B such that (X, B) has lc singularities and either

1. B has a component S with coefficient 1 and $-(K_X + B)$ ample, or
2. $K_X + B \equiv 0$ along fibres of a Fano fibration $f : X \to Z$, or
3. X is ϵ-lc for fixed $\epsilon > 0$.

These cases require very different inductive treatment.

Case (1): apply divisorial adjunction to define $K_S + B_S = (K_X + B)|_S$.
Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:

We can change X birationally and find B such that (X, B) has lc singularities and either

(1) B has a component S with coefficient 1 and $-(K_X + B)$ ample, or
(2) $K_X + B \equiv 0$ along fibres of a Fano fibration $f : X \to Z$, or
(3) X is ε-lc for fixed $\varepsilon > 0$.
Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:

We can change X birationally and find B such that (X, B) has lc singularities and either

1. B has a component S with coefficient 1 and $-(K_X + B)$ ample, or
2. $K_X + B \equiv 0$ along fibres of a Fano fibration $f : X \to Z$, or
3. X is ϵ-lc for fixed $\epsilon > 0$.

These cases require very different inductive treatment.
Complements and effective birationality

Theorem (Boundedness of complements [B, 2016])

For each d there is m such that any klt Fano variety X of dimension d has an m-complement.

Some ideas of the proof:

We can change X birationally and find B such that (X, B) has lc singularities and either

1. B has a component S with coefficient 1 and $-(K_X + B)$ ample, or
2. $K_X + B \equiv 0$ along fibres of a Fano fibration $f : X \to Z$, or
3. X is ϵ-lc for fixed $\epsilon > 0$.

These cases require very different inductive treatment.

Case (1): apply **divisorial adjunction** to define $K_S + B_S = (K_X + B)|_S$.

S is not necessarily Fano but it is close.
S is not necessarily Fano but it is close.

Key point: find a complement for $K_S + B_S$ rather than K_S. This requires proving a more general form of the theorem.
S is not necessarily Fano but it is close.

Key point: find a complement for $K_S + B_S$ rather than K_S. This requires proving a more general form of the theorem.

Then lift the complement to X using cohomology vanishing theorems.
Complements and effective birationality

S is not necessarily Fano but it is close.

Key point: find a complement for $K_S + B_S$ rather than K_S. This requires proving a more general form of the theorem.

Then lift the complement to X using cohomology vanishing theorems.

Case (2): apply the **canonical bundle formula** to write

$$K_X + B \sim_{\mathbb{R}} f^*(K_Z + B_Z + M_Z)$$

where B_Z is the discriminant divisor and M_Z is the moduli divisor.
S is not necessarily Fano but it is close.

Key point: find a complement for $K_S + B_S$ rather than K_S. This requires proving a more general form of the theorem.

Then lift the complement to X using cohomology vanishing theorems.

Case (2): apply the **canonical bundle formula** to write

$$K_X + B \sim_{\mathbb{R}} f^*(K_Z + B_Z + M_Z)$$

where B_Z is the discriminant divisor and M_Z is the moduli divisor.

Key point: find a complement for $K_Z + B_Z + M_Z$ and pull it back to X. This requires proving an even more general theorem.
Complements and effective birationality

S is not necessarily Fano but it is close.

Key point: find a complement for $K_S + B_S$ rather than K_S. This requires proving a more general form of the theorem.

Then lift the complement to X using cohomology vanishing theorems.

Case (2): apply the **canonical bundle formula** to write

$$K_X + B \sim_{\mathbb{R}} f^*(K_Z + B_Z + M_Z)$$

where B_Z is the discriminant divisor and M_Z is the moduli divisor.

Key point: find a complement for $K_Z + B_Z + M_Z$ and pull it back to X. This requires proving an even more general theorem.

$(Z, B_Z + M_Z)$ is a generalised pair; developed in [B-Zhang, 2014].
Case (3): go through effective birationality.
Case (3): go through effective birationality.

Pick m such that $\text{vol}(-mK_X) > (2d)^d$.
Case (3): go through effective birationality.

Pick m such that $\text{vol}(-mK_X) > (2d)^d$.

There is a family of effective $\Gamma \sim_{\mathbb{Q}} -mK_X$ and non-klt centres G of (X, Γ) covering X.
Case (3): go through effective birationality.

Pick m such that $\text{vol}(-mK_X) > (2d)^d$.

There is a family of effective $\Gamma \sim \mathbb{Q} - mK_X$ and non-klt centres G of (X, Γ) covering X.

If $\dim G = 0$, use multiplier ideals and vanishing theorems to show $| - mK_X|$ is birational up to bounded multiple of m. Eventually need to bound m from above.
Complements and effective birationality

Case (3): go through effective birationality.

Pick m such that $\text{vol}(-mK_X) > (2d)^d$.

There is a family of effective $\Gamma \sim \mathbb{Q} -mK_X$ and non-klt centres G of (X, Γ) covering X.

If $\dim G = 0$, use multiplier ideals and vanishing theorems to show $|-mK_X|$ is birational up to bounded multiple of m. Eventually need to bound m from above.

Hard part: if $\dim G > 0$, show $\text{vol}(-mK_X|_G)$ is bounded from below to replace G and decrease dimension.
Complements and effective birationality

Case (3): go through effective birationality.

Pick m such that $\text{vol}(-mK_X) > (2d)^d$.

There is a family of effective $\Gamma \sim_{\mathbb{Q}} -mK_X$ and non-klt centres G of (X, Γ) covering X.

If $\dim G = 0$, use multiplier ideals and vanishing theorems to show $| -mK_X|$ is birational up to bounded multiple of m. Eventually need to bound m from above.

Hard part: if $\dim G > 0$, show $\text{vol}(-mK_X|_G)$ is bounded from below to replace G and decrease dimension.

Can write $(K_X + \Gamma)|_G \sim_{\mathbb{R}} K_F + \Theta_F + P_F$ where F is normalisation of G, Θ_F is a boundary, and P_F is big.
Case (3): go through effective birationality.

Pick m such that $\text{vol}(-mK_X) > (2d)^d$.

There is a family of effective $\Gamma \sim \mathbb{Q} - mK_X$ and non-klt centres G of (X, Γ) covering X.

If $\dim G = 0$, use multiplier ideals and vanishing theorems to show $|-mK_X|$ is birational up to bounded multiple of m. Eventually need to bound m from above.

Hard part: if $\dim G > 0$, show $\text{vol}(-mK_X|_G)$ is bounded from below to replace G and decrease dimension.

Can write $(K_X + \Gamma)|_G \sim_{\mathbb{R}} K_F + \Theta_F + P_F$ where F is normalisation of G, Θ_F is a boundary, and P_F is big.
Difficulty with induction: F may not be Fano, singularities of $(F, \Theta_F + P_F)$ hard to control.

Show F is birational to a bounded F'.

Show we can make $(F, \Theta_F + P_F)$ bad singularities.

This gives divisors on F' with bounded "degree" but unbounded lc thresholds.

This contradicts (a special case of) the theorem on boundedness of lc thresholds.
Difficulty with induction: F may not be Fano, singularities of $(F, \Theta_F + P_F)$ hard to control.

Show F is birational to a bounded F'.
Difficulty with induction: F may not be Fano, singularities of $(F, \Theta_F + P_F)$ hard to control.

Show F is birational to a bounded F'.
Show we can make $(F, \Theta_F + P_F)$ bad singularities.
Difficulty with induction: F may not be Fano, singularities of $(F, \Theta_F + P_F)$ hard to control.

Show F is birational to a bounded F'.

Show we can make $(F, \Theta_F + P_F)$ bad singularities.

This gives divisors on F' with bounded "degree" but unbounded lc thresholds.
Difficulty with induction: F may not be Fano, singularities of $(F, \Theta_F + P_F)$ hard to control.

Show F is birational to a bounded F'.

Show we can make $(F, \Theta_F + P_F)$ bad singularities.

This gives divisors on F' with bounded "degree" but unbounded lc thresholds.

This contradicts (a special case of) the theorem on boundedness of lc thresholds.
Theorem (Boundedness of lc thresholds [B, 2016])

For each $d, r, \epsilon > 0$ there is $t > 0$ such that if

- (X, B) is projective ϵ-lc of dimension d,
- A is very ample with $A^d \leq r$, and
- $A - B$ is ample,

then

$$\operatorname{lct}(X, B, |A|_{\mathbb{R}}) \geq t.$$
Theorem (Boundedness of lc thresholds [B, 2016])

For each \(d, r, \epsilon > 0 \) there is \(t > 0 \) such that if

1. \((X, B)\) is projective \(\epsilon \)-lc of dimension \(d \),
2. \(A \) is very ample with \(A^d \leq r \), and
3. \(A - B \) is ample,

then

\[
\operatorname{lct}(X, B, |A|_{\mathbb{R}}) \geq t.
\]

Some ideas of proof of this theorem:
Theorem (Boundedness of lc thresholds [B, 2016])

For each $d, r, \varepsilon > 0$ there is $t > 0$ such that if

- (X, B) is projective ε-lc of dimension d,
- A is very ample with $A^d \leq r$, and
- $A - B$ is ample,

then

$$\text{lct}(X, B, |A|_\mathbb{R}) \geq t.$$

Some ideas of proof of this theorem:

Pick $0 \leq N \sim_\mathbb{R} A$.
Theorem (Boundedness of lc thresholds [B, 2016])

For each $d, r, \epsilon > 0$ there is $t > 0$ such that if

- (X, B) is projective ϵ-lc of dimension d,
- A is very ample with $A^d \leq r$, and
- $A - B$ is ample,

then

$$\operatorname{lct}(X, B, |A|_{\mathbb{R}}) \geq t.$$

Some ideas of proof of this theorem:

Pick $0 \leq N \sim_{\mathbb{R}} A$.

If $\operatorname{lct}(X, B, N)$ is too small, pick appropriate prime divisor T with log discrepancy $a(T, X, B + sN)$ too small ($s > 0$ is small).
Boundedness of singularities

Theorem (Boundedness of lc thresholds [B, 2016])

For each $d, r, \epsilon > 0$ there is $t > 0$ such that if
- (X, B) is projective ϵ-lc of dimension d,
- A is very ample with $A^d \leq r$, and
- $A - B$ is ample,

then

$$\operatorname{lct}(X, B, |A|_{\mathbb{R}}) \geq t.$$

Some ideas of proof of this theorem:

Pick $0 \leq N \sim_{\mathbb{R}} A$.

If $\operatorname{lct}(X, B, N)$ is too small, pick appropriate prime divisor T with log discrepancy $a(T, X, B + sN)$ too small ($s > 0$ is small).

We need to bounded multiplicity of T in $\phi^* N$ on resolutions $\phi: V \to X$.

Boundedness of singularities

Use a local-global type of complement to produce \(\Lambda \) such that \((X, \Lambda)\) is lc and \(a(T, X, \Lambda) = 0\).
Boundedness of singularities

Use a local-global type of complement to produce Λ such that (X, Λ) is lc and $a(T, X, \Lambda) = 0$.

Reduce to the case when (X, Λ) is log smooth and T is reduced.
Boundedness of singularities

Use a local-global type of complement to produce Λ such that (X, Λ) is lc and $a(T, X, \Lambda) = 0$.

Reduce to the case when (X, Λ) is log smooth and T is reduced.

Obtain T by toroidal blowups.
Use a local-global type of complement to produce Λ such that (X, Λ) is lc and $a(T, X, \Lambda) = 0$.

Reduce to the case when (X, Λ) is log smooth and T is reduced.

Obtain T by toroidal blowups.

By means of finite maps onto \mathbb{P}^d reduce to a similar problem on \mathbb{P}^d.

Finally the problem is reduced to boundedness of ϵ-lc toric Fano varieties of dim d which is well-known.
Boundedness of singularities

Use a local-global type of complement to produce \(\Lambda \) such that \((X, \Lambda)\) is lc and \(a(T, X, \Lambda) = 0\).

Reduce to the case when \((X, \Lambda)\) is log smooth and \(T\) is reduced.

Obtain \(T\) by toroidal blowups.

By means of finite maps onto \(\mathbb{P}^d\) reduce to a similar problem on \(\mathbb{P}^d\).

Finally the problem is reduced to boundedness of \(\epsilon\)-lc toric Fano varieties of dim \(d\) which is well-known.