Perverse Sheaves on Semi-abelian Varieties: Structure and Applications

Laurentiu Maxim
(joint work with Yongqiang Liu and Botong Wang)

University of Wisconsin-Madison
Let X be a smooth connected complex quasi-projective variety with $b_1(X) > 0$.

The (identity component of the) moduli space of rank-one C-local systems on X is defined as:

$$\text{Char}(X) := \text{Hom}(H_1(X, \mathbb{Z})/\text{Torsion}, C^*) \cong (C^*)^{b_1(X)}$$

Definition

The i-th cohomology jumping locus of X is defined as:

$$V_i(X) = \{ \rho \in \text{Char}(X) | H^i(X, L_{\rho}) \neq 0 \}$$

$V_i(X)$ are closed subvarieties of $\text{Char}(X)$ and homotopy invariants of X.

Laurentiu Maxim
Cohomology jump loci

Let X be a smooth connected complex quasi-projective variety with $b_1(X) > 0$.

The (identity component of the) moduli space of rank-one \mathbb{C}-local systems on X is defined as:

$$\text{Char}(X) := \text{Hom}(H_1(X, \mathbb{Z})/\text{Torsion}, \mathbb{C}^*) \cong (\mathbb{C}^*)^{b_1(X)}$$
Cohomology jump loci

Let X be a smooth connected complex quasi-projective variety with $b_1(X) > 0$.
The (identity component of the) moduli space of rank-one \mathbb{C}-local systems on X is defined as:

$$\text{Char}(X) := \text{Hom}(\text{H}_1(X, \mathbb{Z})/\text{Torsion}, \mathbb{C}^*) \cong (\mathbb{C}^*)^{b_1(X)}$$

Definition

The *i*-th cohomology jumping locus of X is defined as:

$$\mathcal{V}^i(X) = \{ \rho \in \text{Char}(X) \mid H^i(X, L_\rho) \neq 0 \},$$

where L_ρ is the rank-one \mathbb{C}-local system on X associated to the representation $\rho \in \text{Char}(X)$.
Let X be a smooth connected complex quasi-projective variety with $b_1(X) > 0$. The (identity component of the) moduli space of rank-one \mathbb{C}-local systems on X is defined as:

$$\text{Char}(X) := \text{Hom}(H_1(X, \mathbb{Z})/\text{Torsion}, \mathbb{C}^*) \cong (\mathbb{C}^*)^{b_1(X)}$$

Definition

The *i*-th cohomology jumping locus of X is defined as:

$$\mathcal{V}^i(X) = \{ \rho \in \text{Char}(X) \mid H^i(X, L_\rho) \neq 0 \},$$

where L_ρ is the rank-one \mathbb{C}-local system on X associated to the representation $\rho \in \text{Char}(X)$.

$\mathcal{V}^i(X)$ are closed subvarieties of $\text{Char}(X)$ and homotopy invariants of X.
A complex *abelian variety* of dimension g is a compact complex torus $\mathbb{C}^g/\mathbb{Z}^{2g}$ which is also a complex projective variety.
A complex *abelian variety* of dimension g is a compact complex torus $\mathbb{C}^g / \mathbb{Z}^{2g}$ which is also a complex projective variety. A *semi-abelian variety* G is an abelian complex algebraic group which is an extension

$$1 \rightarrow T \rightarrow G \rightarrow A \rightarrow 1,$$

where A is an abelian variety of dimension g and $T \cong (\mathbb{C}^\ast)^m$ is an algebraic affine torus of dimension m.
A complex *abelian variety* of dimension g is a compact complex torus $\mathbb{C}^g/\mathbb{Z}^{2g}$ which is also a complex projective variety. A *semi-abelian variety* G is an abelian complex algebraic group which is an extension

$$1 \to T \to G \to A \to 1,$$

where A is an abelian variety of dimension g and $T \cong (\mathbb{C}^*)^m$ is an algebraic affine torus of dimension m. In particular,

$$\pi_1(G) \cong \mathbb{Z}^{m+2g}, \text{ with } \dim G = m + g.$$
Albanese map. Albanese variety

Definition

Let X be a smooth complex quasi-projective variety. The \textit{Albanese map} of X is a morphism $\text{alb} : X \to \text{Alb}(X)$ from X to a semi-abelian variety $\text{Alb}(X)$.

Laurentiu Maxim
Definition

Let X be a smooth complex quasi-projective variety. The *Albanese map* of X is a morphism $\text{alb} : X \to \text{Alb}(X)$ from X to a semi-abelian variety $\text{Alb}(X)$ such that for any morphism $f : X \to G$ to a semi-abelian variety G, there exists a unique morphism $g : \text{Alb}(X) \to G$ such that the following diagram commutes:

\[
\begin{array}{ccc}
X & \xrightarrow{\text{alb}} & \text{Alb}(X) \\
\downarrow f & & \downarrow \exists! g \\
G & &
\end{array}
\]
Definition

Let X be a smooth complex quasi-projective variety. The *Albanese map* of X is a morphism $\text{alb} : X \rightarrow \text{Alb}(X)$ from X to a semi-abelian variety $\text{Alb}(X)$ such that for any morphism $f : X \rightarrow G$ to a semi-abelian variety G, there exists a unique morphism $g : \text{Alb}(X) \rightarrow G$ such that the following diagram commutes:

$$
\begin{array}{ccc}
X & \xrightarrow{\text{alb}} & \text{Alb}(X) \\
\downarrow f & & \downarrow g \\
G & & G
\end{array}
$$

$\text{Alb}(X)$ is called the *Albanese variety* associated to X.

Laurentiu Maxim
The Albanese map induces an isomorphism on the free part of H_1:

$$H_1(X, \mathbb{Z})/\text{Torsion} \xrightarrow{\cong} H_1(\text{Alb}(X), \mathbb{Z}).$$
The Albanese map induces an isomorphism on the free part of H_1:

$$H_1(X, \mathbb{Z})/\text{Torsion} \xrightarrow{\cong} H_1(\text{Alb}(X), \mathbb{Z}).$$

In particular,

$$\text{Char}(X) \cong \text{Char}(\text{Alb}(X)).$$
By the projection formula, for any $\rho \in \text{Char}(X) \cong \text{Char}(\text{Alb}(X))$:

$$H^i(X, L_\rho) \cong H^i(\text{Alb}(X), (R\text{alb}_* \mathbb{C}_X) \otimes L_\rho).$$
Constructible complexes enter the scene

By the projection formula, for any $\rho \in \text{Char}(X) \cong \text{Char}(\text{Alb}(X))$:

$$H^i(X, L_\rho) \cong H^i(\text{Alb}(X), (R\text{alb}_* \mathbb{C}_X) \otimes L_\rho).$$

Hence,

$$\mathcal{V}^i(X) = \mathcal{V}^i(\text{Alb}(X), R\text{alb}_* \mathbb{C}_X).$$
Constructible complexes enter the scene

By the projection formula, for any $\rho \in \text{Char}(X) \cong \text{Char}(\text{Alb}(X))$:

$$H^i(X, L_\rho) \cong H^i(\text{Alb}(X), (R\text{alb}_* \mathbb{C}_X) \otimes L_\rho).$$

Hence,

$$\mathcal{V}^i(X) = \mathcal{V}^i(\text{Alb}(X), R\text{alb}_* \mathbb{C}_X).$$

If alb is proper (e.g., X is projective), the BBDG decomposition theorem yields that $R\text{alb}_* \mathbb{C}_X$ is a direct sum of (shifted) perverse sheaves.
Constructible complexes enter the scene

By the projection formula, for any $\rho \in \text{Char}(X) \cong \text{Char}(\text{Alb}(X))$:

$$H^i(X, L_\rho) \cong H^i(\text{Alb}(X), (R \text{alb}_* \mathbb{C}_X) \otimes L_\rho).$$

Hence,

$$\mathcal{V}^i(X) = \mathcal{V}^i(\text{Alb}(X), R \text{alb}_* \mathbb{C}_X).$$

If alb is proper (e.g., X is projective), the BBDG decomposition theorem yields that $R \text{alb}_* \mathbb{C}_X$ is a direct sum of (shifted) perverse sheaves.

This motivates the study of cohomology jumping loci of constructible complexes (resp., perverse sheaves) on semi-abelian varieties.
Definition

Let $\mathcal{F} \in D^b_c(G, \mathbb{C})$ be a bounded constructible complex of \mathbb{C}-sheaves on a semi-abelian variety G. The degree i cohomology jumping locus of \mathcal{F} is defined as:

$$V^i(G, \mathcal{F}) := \{ \rho \in \text{Char}(G) \mid H^i(G, \mathcal{F} \otimes \mathbb{C} L_\rho) \neq 0 \}.$$
Cohomology jump loci of constructible complexes

Definition

Let $\mathcal{F} \in D_c^b(G, \mathbb{C})$ be a bounded constructible complex of \mathbb{C}-sheaves on a semi-abelian variety G. The *degree i cohomology jumping locus of \mathcal{F}* is defined as:

$$\mathcal{V}^i(G, \mathcal{F}) := \{ \rho \in \text{Char}(G) \mid H^i(G, \mathcal{F} \otimes_{\mathbb{C}} L_\rho) \neq 0 \}.$$

Theorem (Budur-Wang)

Each $\mathcal{V}^i(G, \mathcal{F})$ is a finite union of translated subtori of $\text{Char}(G)$.
Mellin transformation

\[\text{Char}(G) = \text{Spec } \Gamma_G, \text{ with } \Gamma_G := \mathbb{C}[\pi_1(G)] \cong \mathbb{C}[t_1^{\pm1}, \cdots, t_{m+2g}^{\pm1}] \]
Mellin transformation

\[\text{Char}(G) = \text{Spec} \Gamma_G, \text{ with } \Gamma_G := \mathbb{C}[\pi_1(G)] \cong \mathbb{C}[t_1^{\pm 1}, \ldots, t_{m+2g}^{\pm 1}] \].

Let \(\mathcal{L}_G \) be the (universal) rank 1 local system of \(\Gamma_G \)-modules on \(G \), defined by mapping the generators of \(\pi_1(G) \cong \mathbb{Z}^{m+2g} \) to the multiplication by the corresponding variables of \(\Gamma_G \).
Mellin transformation

\[
\text{Char}(G) = \text{Spec} \Gamma_G, \text{ with } \Gamma_G := \mathbb{C}[\pi_1(G)] \cong \mathbb{C}[t_1^{\pm 1}, \ldots, t_{m+2g}^{\pm 1}].
\]

Let \(\mathcal{L}_G \) be the (universal) rank 1 local system of \(\Gamma_G \)-modules on \(G \), defined by mapping the generators of \(\pi_1(G) \cong \mathbb{Z}^{m+2g} \) to the multiplication by the corresponding variables of \(\Gamma_G \).

Definition

The *Mellin transformation* \(\mathcal{M}_* : D^b_c(G, \mathbb{C}) \to D^b_{coh}(\Gamma_G) \) is given by

\[
\mathcal{M}_*(\mathcal{F}) := \text{Ra}_*(\mathcal{L}_G \otimes_{\mathbb{C}} \mathcal{F}),
\]

where \(a : G \to \text{pt} \) is the constant map, and \(D^b_{coh}(\Gamma_G) \) denotes the bounded coherent complexes of \(\Gamma_G \)-modules.

Theorem (Gabber-Loeser ’96, Liu-M.-Wang ’17)

If \(G = T \) is a complex affine torus, then:

\[
\mathcal{F} \in \text{Perv}(T, \mathbb{C}) \iff H^i(\mathcal{M}_*(\mathcal{F})) = 0 \text{ for all } i \neq 0.
\]
Mellin transformation

\[\text{Char}(G) = \text{Spec } \Gamma_G, \text{ with } \Gamma_G := \mathbb{C}[\pi_1(G)] \cong \mathbb{C}[t_1^{\pm 1}, \ldots, t_{m+2g}^{\pm 1}]. \]

Let \(\mathcal{L}_G \) be the (universal) rank 1 local system of \(\Gamma_G \)-modules on \(G \), defined by mapping the generators of \(\pi_1(G) \cong \mathbb{Z}^{m+2g} \) to the multiplication by the corresponding variables of \(\Gamma_G \).

Definition

The **Mellin transformation** \(\mathcal{M}_*: D^b_c(G, \mathbb{C}) \to D^b_{coh}(\Gamma_G) \) is given by

\[
\mathcal{M}_*(\mathcal{F}) := Ra_*(\mathcal{L}_G \otimes_{\mathbb{C}} \mathcal{F}),
\]

where \(a: G \to pt \) is the constant map, and \(D^b_{coh}(\Gamma_G) \) denotes the bounded coherent complexes of \(\Gamma_G \)-modules.

Theorem (Gabber-Loeser '96, Liu-M.-Wang '17)

If \(G = T \) is a complex affine torus, then:

\[\mathcal{F} \in \text{Perv}(T, \mathbb{C}) \iff H^i(\mathcal{M}_*(\mathcal{F})) = 0 \text{ for all } i \neq 0. \]
(By the projection formula) cohomology jump loci of \mathcal{F} are determined by those of $\mathcal{M}_*(\mathcal{F})$:

$$\mathcal{V}^i(G, \mathcal{F}) = \mathcal{V}^i(\mathcal{M}_*(\mathcal{F})),$$
(By the projection formula) cohomology jump loci of \mathcal{F} are determined by those of $\mathcal{M}_*(\mathcal{F})$:

$$\mathcal{V}^i(G, \mathcal{F}) = \mathcal{V}^i(\mathcal{M}_*(\mathcal{F})),$$

where if R is a Noetherian domain and E^\bullet is a bounded complex of R-modules with finitely generated cohomology, we set

$$\mathcal{V}^i(E^\bullet) := \{ \chi \in \text{Spec } R \mid H^i(F^\bullet \otimes_R R/\chi) \neq 0 \},$$

with F^\bullet a bounded above finitely generated free resolution of E^\bullet.
(By the projection formula) cohomology jump loci of \mathcal{F} are determined by those of $\mathcal{M}_*(\mathcal{F})$:

$$\mathcal{V}^i(G, \mathcal{F}) = \mathcal{V}^i(\mathcal{M}_*(\mathcal{F})),$$

where if R is a Noetherian domain and E^\bullet is a bounded complex of R-modules with finitely generated cohomology, we set

$$\mathcal{V}^i(E^\bullet) := \{ \chi \in \text{Spec } R \mid H^i(F^\bullet \otimes_R R/\chi) \neq 0 \},$$

with F^\bullet a bounded above finitely generated free resolution of E^\bullet. So, understanding $\mathcal{V}^i(G, \mathcal{F})$ is now a commutative algebra problem!
Theorem (Liu-M.-Wang ’18)

For any \(\mathbb{C} \)-perverse sheaf \(\mathcal{P} \) on a semi-abelian variety \(G \), the cohomology jump loci of \(\mathcal{P} \) satisfy the following properties:

(i) \textit{Propagation property}:

\[
\mathcal{V}^{-m-g}(G, \mathcal{P}) \subseteq \cdots \subseteq \mathcal{V}^0(G, \mathcal{P}) \supseteq \mathcal{V}^1(G, \mathcal{P}) \supseteq \cdots \supseteq \mathcal{V}^g(G, \mathcal{P}).
\]

Moreover, \(\mathcal{V}^i(G, \mathcal{P}) = \emptyset \) if \(i \notin [-m-g, g] \).

(ii) \textit{Codimension lower bound}: for any \(i \geq 0 \),

\[
\text{codim}\mathcal{V}^i(G, \mathcal{P}) \geq 2i \quad \text{and} \quad \text{codim}\mathcal{V}^{-i}(G, \mathcal{P}) \geq i.
\]
Remark (Equivalent formulation of the propagation property)

Let \mathcal{P} be a \mathbb{C}-perverse sheaf so that not all $H^i(G, \mathcal{P})$ are zero.
Remark (Equivalent formulation of the propagation property)

Let \mathcal{P} be a \mathbb{C}-perverse sheaf so that not all $H^j(G, \mathcal{P})$ are zero. Let

\[k_+ := \max\{j \mid H^j(G, \mathcal{P}) \neq 0\} \quad \text{and} \quad k_- := \min\{j \mid H^j(G, \mathcal{P}) \neq 0\}. \]
Remark (Equivalent formulation of the propagation property)

Let \mathcal{P} be a \mathbb{C}-perverse sheaf so that not all $H^j(G, \mathcal{P})$ are zero. Let

$$k_+ := \max\{j \mid H^j(G, \mathcal{P}) \neq 0\} \quad \text{and} \quad k_- := \min\{j \mid H^j(G, \mathcal{P}) \neq 0\}.$$

The propagation property is equivalent to: $k_+ \geq 0$, $k_- \leq 0$ and

$$H^j(G, \mathcal{P}) \neq 0 \iff k_- \leq j \leq k_+.$$
Remark (Equivalent formulation of the propagation property)

Let \mathcal{P} be a \mathbb{C}-perverse sheaf so that not all $H^j(G, \mathcal{P})$ are zero. Let

$$k_+ := \max\{j \mid H^j(G, \mathcal{P}) \neq 0\} \text{ and } k_- := \min\{j \mid H^j(G, \mathcal{P}) \neq 0\}.$$

The propagation property is equivalent to: $k_+ \geq 0$, $k_- \leq 0$ and

$$H^j(G, \mathcal{P}) \neq 0 \iff k_- \leq j \leq k_+.$$

(If $G = A$ is an abelian variety, a similar result was proved by Weissauer.)
Generic vanishing

Corollary (Kramer ’14, Liu-M.-Wang ’17, Franecki-Kapranov ’00)

For any \mathbb{C}-perverse sheaf \mathcal{P} on a semi-abelian variety G,

$$H^i(G, \mathcal{P} \otimes_{\mathbb{C}} L_{\rho}) = 0$$

for any generic rank-one \mathbb{C}-local system L_{ρ} and all $i \neq 0$.

Laurentiu Maxim
Corollary (Kramer ’14, Liu-M.-Wang ’17, Franecki-Kapranov ’00)

For any \(\mathbb{C} \)-perverse sheaf \(\mathcal{P} \) on a semi-abelian variety \(G \),

\[
H^i(G, \mathcal{P} \otimes_{\mathbb{C}} L_\rho) = 0
\]

for any generic rank-one \(\mathbb{C} \)-local system \(L_\rho \) and all \(i \neq 0 \).

In particular,

\[
\chi(G, \mathcal{P}) \geq 0.
\]

Moreover, the equality holds if and only if \(V^0(G, \mathcal{P}) \neq \text{Char}(G) \).
Corollary (Liu-M.-Wang ’18)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that $R \text{alb}_* \mathbb{C}_X[n]$ is a perverse sheaf on $\text{Alb}(X)$ (e.g., alb is proper and semi-small). Then:

1. Propagation property: $V^n(X) \supseteq V^{n-1}(X) \supseteq \cdots \supseteq V^0(X) = \{1\}$ and $V^n(X) \supseteq V^{n+1}(X) \supseteq \cdots \supseteq V^{2n}(X)$.

2. Codimension lower bound: for any $i \geq 0$, $\text{codim} V^{n-i}(X) \geq i$ and $\text{codim} V^{n+i}(X) \geq 2i$.

3. Generic vanishing: $H^i(X, L^\rho) = 0$ for generic $\rho \in \text{Char}(X)$ and all $i \neq n$.

4. Signed Euler characteristic property: $(-1)^n \cdot \chi(X) \geq 0$.

5. Betti property: $b_i(X) > 0$ for any $i \in [0, n]$, and $b_1(X) \geq n$.

Laurentiu Maxim
Corollary (Liu-M.-Wang ’18)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that $R \text{alb}_* \mathbb{C}_X[n]$ is a perverse sheaf on $\text{Alb}(X)$ (e.g., alb is proper and semi-small). Then:

(1) **Propagation property:**

$$V^n(X) \supseteq V^{n-1}(X) \supseteq \cdots \supseteq V^0(X) = \{1\};$$

$$V^n(X) \supseteq V^{n+1}(X) \supseteq \cdots \supseteq V^{2n}(X).$$
Corollary (Liu-M.-Wang ’18)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that $R\text{alb}_* \mathbb{C}_X[n]$ is a perverse sheaf on $\text{Alb}(X)$ (e.g., alb is proper and semi-small). Then:

1. **Propagation property:**

 $$\mathcal{V}^n(X) \supseteq \mathcal{V}^{n-1}(X) \supseteq \cdots \supseteq \mathcal{V}^0(X) = \{1\};$$
 $$\mathcal{V}^n(X) \supseteq \mathcal{V}^{n+1}(X) \supseteq \cdots \supseteq \mathcal{V}^{2n}(X).$$

2. **Codimension lower bound:** for any $i \geq 0$,

 $$\text{codim} \mathcal{V}^{n-i}(X) \geq i \quad \text{and} \quad \text{codim} \mathcal{V}^{n+i}(X) \geq 2i.$$
Corollary (Liu-M.-Wang '18)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that $R \text{alb}_* \mathbb{C}_X[n]$ is a perverse sheaf on $\text{Alb}(X)$ (e.g., alb is proper and semi-small). Then:

1. **Propagation property:**

 $V^n(X) \supseteq V^{n-1}(X) \supseteq \cdots \supseteq V^0(X) = \{1\}$;

 $V^n(X) \supseteq V^{n+1}(X) \supseteq \cdots \supseteq V^{2n}(X)$.

2. **Codimension lower bound:** for any $i \geq 0$,

 $\text{codim} V^{n-i}(X) \geq i$ and $\text{codim} V^{n+i}(X) \geq 2i$.

3. **Generic vanishing:** $H^i(X, L_\rho) = 0$ for generic $\rho \in \text{Char}(X)$ and all $i \neq n$.
Corollary (Liu-M.-Wang ’18)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that $R\text{alb}_* \mathbb{C}_X[n]$ is a perverse sheaf on $\text{Alb}(X)$ (e.g., alb is proper and semi-small). Then:

1. **Propagation property:**

 $V^n(X) \supseteq V^{n-1}(X) \supseteq \cdots \supseteq V^0(X) = \{1\};$

 $V^n(X) \supseteq V^{n+1}(X) \supseteq \cdots \supseteq V^{2n}(X).$

2. **Codimension lower bound:** for any $i \geq 0$,

 $\text{codim} V^{n-i}(X) \geq i$ and $\text{codim} V^{n+i}(X) \geq 2i.$

3. **Generic vanishing:** $H^i(X, L_\rho) = 0$ for generic $\rho \in \text{Char}(X)$ and all $i \neq n.$

4. **Signed Euler characteristic property:** $(-1)^n \cdot \chi(X) \geq 0.$
Corollary (Liu-M.-Wang ’18)

Let X be a smooth quasi-projective variety of complex dimension n. Assume that $R\text{alb}_* \mathbb{C}_X[n]$ is a perverse sheaf on $\text{Alb}(X)$ (e.g., alb is proper and semi-small). Then:

1. **Propagation property:**

$$V^n(X) \supseteq V^{n-1}(X) \supseteq \cdots \supseteq V^0(X) = \{1\};$$

$$V^n(X) \supseteq V^{n+1}(X) \supseteq \cdots \supseteq V^{2n}(X).$$

2. **Codimension lower bound:** for any $i \geq 0$,

$$\text{codim} V^{n-i}(X) \geq i \text{ and } \text{codim} V^{n+i}(X) \geq 2i.$$

3. **Generic vanishing:** $H^i(X, L^\rho) = 0$ for generic $\rho \in \text{Char}(X)$ and all $i \neq n$.

4. **Signed Euler characteristic property:** $(-1)^n \cdot \chi(X) \geq 0$.

5. **Betti property:** $b_i(X) > 0$ for any $i \in [0, n]$, and $b_1(X) \geq n$.

Laurentiu Maxim
Corollary (Liu-M.-Wang ’18)

Let X be a smooth quasi-projective variety with proper Albanese map (e.g., X is projective), and assume that X is homotopy equivalent to a torus. Then X is isomorphic to a semi-abelian variety.
Homological duality

Definition (Denham-Suciu-Yuzvinsky ’15)

A connected finite CW complex X, with $H := H_1(X, \mathbb{Z})$, is an **abelian duality space of dimension n** if:

(a) $H^i(X, \mathbb{Z}[H]) = 0$ for $i \neq n$,
(b) $H^n(X, \mathbb{Z}[H])$ is a (non-zero) torsion-free \mathbb{Z}-module.
Homological duality

Definition (Denham-Suciu-Yuzvinsky ’15)
A connected finite CW complex X, with $H := H_1(X, \mathbb{Z})$, is an abelian duality space of dimension n if:

(a) $H^i(X, \mathbb{Z}[H]) = 0$ for $i \neq n$,

(b) $H^n(X, \mathbb{Z}[H])$ is a (non-zero) torsion-free \mathbb{Z}-module.

In what follows we work with the full character variety

$$\text{Char}(X) = \text{Hom}(H, \mathbb{C}^*).$$
Using properties of the Mellin transformation, we get:

Theorem (Liu-M.-Wang ’18)

Let X be an n-dimensional smooth complex quasi-projective variety, which is homotopy equivalent to an n-dimensional CW complex (e.g., X is affine). Suppose the Albanese map alb is proper and semi-small (e.g., a closed embedding), or alb is quasi-finite. Then X is an abelian duality space of dimension n.

Laurentiu Maxim
Example (Very affine manifolds)

Let X be an n-dimensional very affine manifold, i.e., a smooth closed subvariety of a complex affine torus $T = (\mathbb{C}^*)^m$ (e.g., the complement of an essential hyperplane / toric arrangement). Then X is an abelian duality space of dimension n. (Here, alb is proper and semi-small.)
Example (Very affine manifolds)

Let X be an n-dimensional very affine manifold, i.e., a smooth closed subvariety of a complex affine torus $T = (\mathbb{C}^*)^m$ (e.g., the complement of an essential hyperplane / toric arrangement). Then X is an abelian duality space of dimension n. (Here, alb is proper and semi-small.)

Example (Elliptic arrangement complements)

Let E be an elliptic curve, and let \mathcal{A} be an essential elliptic arrangement in $E^{\times n}$ with complement $X := E^{\times n} \setminus \mathcal{A}$.
Example (Very affine manifolds)

Let X be an n-dimensional very affine manifold, i.e., a smooth closed subvariety of a complex affine torus $T = (\mathbb{C}^*)^m$ (e.g., the complement of an essential hyperplane / toric arrangement). Then X is an abelian duality space of dimension n. (Here, alb is proper and semi-small.)

Example (Elliptic arrangement complements)

Let E be an elliptic curve, and let \mathcal{A} be an essential elliptic arrangement in $E \times n$ with complement $X := E \times n \setminus \mathcal{A}$. Then X is a complex n-dimensional affine variety, and by the universal property of the Albanese map, the natural embedding $X \hookrightarrow E \times n$ factors through $\text{alb} : X \to \text{Alb}(X)$.
Example (Very affine manifolds)
Let X be an n-dimensional very affine manifold, i.e., a smooth closed subvariety of a complex affine torus $T = (\mathbb{C}^*)^m$ (e.g., the complement of an essential hyperplane / toric arrangement). Then X is an abelian duality space of dimension n. (Here, alb is proper and semi-small.)

Example (Elliptic arrangement complements)
Let E be an elliptic curve, and let A be an essential elliptic arrangement in $E^{\times n}$ with complement $X := E^{\times n} \setminus A$. Then X is a complex n-dimensional affine variety, and by the universal property of the Albanese map, the natural embedding $X \hookrightarrow E^{\times n}$ factors through $\text{alb} : X \rightarrow \text{Alb}(X)$. Hence the Albanese map $\text{alb} : X \rightarrow \text{Alb}(X)$ is also an embedding (hence quasi-finite).
Example (Very affine manifolds)

Let X be an n-dimensional very affine manifold, i.e., a smooth closed subvariety of a complex affine torus $T = (\mathbb{C}^*)^m$ (e.g., the complement of an essential hyperplane / toric arrangement). Then X is an abelian duality space of dimension n. (Here, alb is proper and semi-small.)

Example (Elliptic arrangement complements)

Let E be an elliptic curve, and let \mathcal{A} be an essential elliptic arrangement in $E\times^n$ with complement $X := E\times^n \setminus \mathcal{A}$. Then X is a complex n-dimensional affine variety, and by the universal property of the Albanese map, the natural embedding $X \hookrightarrow E\times^n$ factors through $\text{alb} : X \to \text{Alb}(X)$. Hence the Albanese map $\text{alb} : X \to \text{Alb}(X)$ is also an embedding (hence quasi-finite). So X is an abelian duality space of dimension n.
Theorem (Denham-Suciu-Yuzvinsky ’15, Liu-M.-Wang ’17)

Let X be an abelian duality space X of dimension n. Then:

(i) **Propagation property:** $\mathcal{V}^n(X) \supseteq \mathcal{V}^{n-1}(X) \supseteq \cdots \supseteq \mathcal{V}^0(X)$.

(ii) **Codimension lower bound:** for any $i \geq 0$,

$$\text{codim} \mathcal{V}^{n-i}(X) = b_1(X) - \dim \mathcal{V}^{n-i}(X) \geq i.$$

(iii) **Generic vanishing:** $H^i(X, L_\rho) = 0$ for ρ generic and all $i \neq n$.

(iv) **Signed Euler characteristic property:**

$$(-1)^n \chi(X) \geq 0.$$

(v) **Betti property:** $b_i(X) > 0$, for $0 \leq i \leq n$, and $b_1(X) \geq n$.

Laurentiu Maxim
The following provides a new topological characterization of compact complex tori and, resp., abelian varieties in terms of homological duality properties:
The following provides a new topological characterization of compact complex tori and, resp., abelian varieties in terms of homological duality properties:

Theorem (Liu-M.-Wang ’17)

Let X be a compact Kähler manifold. Then X is an abelian duality space if and only if X is a compact complex torus.

In particular, abelian varieties are the only complex projective manifolds that are abelian duality spaces.
The following provides a new topological characterization of compact complex tori and, resp., abelian varieties in terms of homological duality properties:

Theorem (Liu-M.-Wang ’17)

Let X be a compact Kähler manifold. Then X is an abelian duality space if and only if X is a compact complex torus. In particular, abelian varieties are the only complex projective manifolds that are abelian duality spaces.
Characterization of perverse sheaves

Theorem (Schnell '15)

If A is an abelian variety and $\mathcal{F} \in D^b_c(A, \mathbb{C})$, then:

$$\mathcal{F} \in \text{Perv}(A, \mathbb{C}) \iff \forall i \in \mathbb{Z} : \text{codim} \mathcal{V}^i(A, \mathcal{P}) \geq |2i|.$$
If $1 \to T \to G \to A \to 1$ defines a semi-abelian variety G, and
$
\Gamma_G := \mathbb{C}[\pi_1(G)], \quad \Gamma_T = \mathbb{C}[\pi_1(T)] \quad \text{and} \quad \Gamma_A = \mathbb{C}[\pi_1(A)],$
then $\text{Spec } \Gamma_G, \text{ Spec } \Gamma_T$ and $\text{Spec } \Gamma_A$ are affine tori fitting into a short exact sequence of linear algebraic groups.

Definition

Let V be an irreducible subvariety of $\text{Spec } \Gamma_G$. Define:

- torus dimension: $\dim_t V = \dim p(V)$,
- abelian dimension: $\dim_a V = \frac{1}{2}(\dim V - \dim_t V)$,
- semi-abelian dimension: $\dim_{sa} V = \dim_t V + \dim_a V$,

- $\text{codim}_t V = m - \dim_t V$,
- $\text{codim}_a V = g - \dim_a V$,
- $\text{codim}_{sa} V = m + g - \dim_{sa} V$.

Laurentiu Maxim
If \(1 \rightarrow T \rightarrow G \rightarrow A \rightarrow 1 \) defines a semi-abelian variety \(G \), and
\[\Gamma_G := \mathbb{C}[\pi_1(G)], \Gamma_T = \mathbb{C}[\pi_1(T)] \text{ and } \Gamma_A = \mathbb{C}[\pi_1(A)], \]
then \(\text{Spec } \Gamma_G, \text{Spec } \Gamma_T \) and \(\text{Spec } \Gamma_A \) are affine tori fitting into a short exact sequence of linear algebraic groups

\[
1 \rightarrow \text{Spec } \Gamma_A \rightarrow \text{Spec } \Gamma_G \xrightarrow{p} \text{Spec } \Gamma_T \rightarrow 1.
\]
If $1 \to T \to G \to A \to 1$ defines a semi-abelian variety G, and $\Gamma_G := \mathbb{C}[\pi_1(G)]$, $\Gamma_T = \mathbb{C}[\pi_1(T)]$ and $\Gamma_A = \mathbb{C}[\pi_1(A)]$, then $\text{Spec} \Gamma_G$, $\text{Spec} \Gamma_T$ and $\text{Spec} \Gamma_A$ are affine tori fitting into a short exact sequence of linear algebraic groups

$$1 \to \text{Spec} \Gamma_A \to \text{Spec} \Gamma_G \xrightarrow{p} \text{Spec} \Gamma_T \to 1.$$

Definition

Let V be an irreducible subvariety of $\text{Spec} \Gamma_G$. Define:

- **torus dimension**: $\dim_t V = \dim p(V)$,
If $1 \to T \to G \to A \to 1$ defines a semi-abelian variety G, and
$
\Gamma_G := \mathbb{C}[\pi_1(G)], \quad \Gamma_T = \mathbb{C}[\pi_1(T)] \quad \text{and} \quad \Gamma_A = \mathbb{C}[\pi_1(A)],
$
then
$\text{Spec} \, \Gamma_G, \text{Spec} \, \Gamma_T \quad \text{and} \text{Spec} \, \Gamma_A$ are affine tori fitting into a short exact sequence of linear algebraic groups

$$1 \to \text{Spec} \, \Gamma_A \to \text{Spec} \, \Gamma_G \xrightarrow{p} \text{Spec} \, \Gamma_T \to 1.$$

Definition

Let V be an irreducible subvariety of $\text{Spec} \, \Gamma_G$. Define:

- **torus dimension**: $\dim_t V = \dim p(V),$
- **abelian dimension**: $\dim_a V = \frac{1}{2} (\dim V - \dim_t V),$
- **semi-abelian dimension**: $\dim_{sa} V = \dim_t V + \dim_a V,$
- $\text{codim}_t V = m - \dim_t V,$
- $\text{codim}_a V = g - \dim_a V,$
- $\text{codim}_{sa} V = m + g - \dim_{sa} V.$
If $1 \to T \to G \to A \to 1$ defines a semi-abelian variety G, and
$\Gamma_G := \mathbb{C}[\pi_1(G)]$, $\Gamma_T = \mathbb{C}[\pi_1(T)]$ and $\Gamma_A = \mathbb{C}[\pi_1(A)]$, then
$\text{Spec} \Gamma_G$, $\text{Spec} \Gamma_T$ and $\text{Spec} \Gamma_A$ are affine tori fitting into a short
exact sequence of linear algebraic groups

$$1 \to \text{Spec} \Gamma_A \to \text{Spec} \Gamma_G \xrightarrow{p} \text{Spec} \Gamma_T \to 1.$$

Definition

Let V be an irreducible subvariety of $\text{Spec} \Gamma_G$. Define:

- **torus dimension**: $\dim_t V = \dim p(V)$,
- **abelian dimension**: $\dim_a V = \frac{1}{2} (\dim V - \dim_t V)$,
- **semi-abelian dimension**: $\dim_{sa} V = \dim_t V + \dim_a V$.

Laurentiu Maxim
If \(1 \to T \to G \to A \to 1\) defines a semi-abelian variety \(G\), and
\[\Gamma_G := \mathbb{C}[\pi_1(G)], \quad \Gamma_T = \mathbb{C}[\pi_1(T)]\] and
\[\Gamma_A = \mathbb{C}[\pi_1(A)],\]
then \(\text{Spec } \Gamma_G, \text{Spec } \Gamma_T\) and \(\text{Spec } \Gamma_A\) are affine tori fitting into a short exact sequence of linear algebraic groups

\[1 \to \text{Spec } \Gamma_A \to \text{Spec } \Gamma_G \xrightarrow{p} \text{Spec } \Gamma_T \to 1.\]

Definition

Let \(V\) be an irreducible subvariety of \(\text{Spec } \Gamma_G\). Define:

- **torus dimension**: \(\dim_t V = \dim p(V)\),
- **abelian dimension**: \(\dim_a V = \frac{1}{2} (\dim V - \dim_t V)\),
- **semi-abelian dimension**: \(\dim_{sa} V = \dim_t V + \dim_a V\).

\[\text{codim}_t V = m - \dim_t V, \quad \text{codim}_a V = g - \dim_a V, \quad \text{codim}_{sa} V = m + g - \dim_{sa} V.\]
Remark

1. If $G = T$ is a complex affine torus: $\dim_{sa}(V) = \dim(V)$, $\text{codim}_{sa}(V) = \text{codim}(V)$, $\dim_a(V) = \text{codim}_a(V) = 0$.

Theorem (Liu-M.-Wang '18)

A constructible complex $F \in D^b_{\text{ct}}(G, \mathbb{C})$ is perverse on G ⇐⇒ (i) $\text{codim}_a V_i(G, F) \geq i$ for any $i \geq 0$, and (ii) $\text{codim}_{sa} V_i(G, F) \geq -i$ for any $i \leq 0$.

Corollary

$F \in D^b_{\text{ct}}(T, \mathbb{C})$ is perverse on a complex affine torus T ⇐⇒ (i) For any $i > 0$: $V_i(T, F) = \emptyset$, and (ii) For any $i \leq 0$: $\text{codim}_a V_i(T, F) \geq -i$.

Laurentiu Maxim
Remark

1. If $G = T$ is a complex affine torus: $\dim_{sa}(V) = \dim(V)$, $\text{codim}_{sa}(V) = \text{codim}(V)$, $\dim_{a}(V) = \text{codim}_{a}(V) = 0$.

2. If $G = A$ is an abelian variety:
 $\dim_{sa}(V) = \dim_{a}(V) = \frac{1}{2}\dim(V)$,
 $\text{codim}_{sa}(V) = \text{codim}_{a}(V) = \frac{1}{2}\text{codim}(V)$.

Theorem (Liu-M.-Wang '18)

A constructible complex $F \in D^b_{\text{c}}(G, \mathbb{C})$ is perverse on G \iff

1. For any $i \geq 0$: $V_i(G, F) = \emptyset$,
2. For any $i \leq 0$: $\text{codim} V_i(G, F) \geq -i$.
Remark

1. If $G = T$ is a complex affine torus: $\dim_{sa}(V) = \dim(V)$, $\codim_{sa}(V) = \codim(V)$, $\dim_a(V) = \codim_a(V) = 0$.

2. If $G = A$ is an abelian variety:
 $\dim_{sa}(V) = \dim_a(V) = \frac{1}{2} \dim(V)$,
 $\codim_{sa}(V) = \codim_a(V) = \frac{1}{2} \codim(V)$.

Theorem (Liu-M.-Wang '18)

A constructible complex $F \in D^b_{\text{c}}(G, \mathbb{C})$ is perverse on G \iff (i) $\codim_a V_i(G, F) \geq i$ for any $i \geq 0$, and (ii) $\codim_{sa} V_i(G, F) \geq -i$ for any $i \leq 0$.

Corollary

$F \in D^b_{\text{c}}(T, \mathbb{C})$ is perverse on a complex affine torus T \iff (i) For any $i > 0$: $V_i(T, F) = \emptyset$, and (ii) For any $i \leq 0$: $\codim V_i(T, F) \geq -i$.

Laurentiu Maxim
Remark

1. *If* $G = T$ *is a complex affine torus*: $\dim_{sa}(V) = \dim(V)$, $\text{codim}_{sa}(V) = \text{codim}(V)$, $\dim_a(V) = \text{codim}_a(V) = 0$.

2. *If* $G = A$ *is an abelian variety*:
 $\dim_{sa}(V) = \dim_a(V) = \frac{1}{2}\dim(V)$,
 $\text{codim}_{sa}(V) = \text{codim}_a(V) = \frac{1}{2}\text{codim}(V)$.

Theorem (Liu-M.-Wang ’18)

A constructible complex $\mathcal{F} \in D^b_c(G, \mathbb{C})$ is perverse on G \iff

(i) $\text{codim}_a V^i(G, \mathcal{F}) \geq i$ for any $i \geq 0$, and

(ii) $\text{codim}_{sa} V^i(G, \mathcal{F}) \geq -i$ for any $i \leq 0$.
Remark

1. If $G = T$ is a complex affine torus: $\dim_{sa}(V) = \dim(V)$, $\text{codim}_{sa}(V) = \text{codim}(V)$, $\dim_a(V) = \text{codim}_a(V) = 0$.

2. If $G = A$ is an abelian variety: $\dim_{sa}(V) = \dim_a(V) = \frac{1}{2} \dim(V)$, $\text{codim}_{sa}(V) = \text{codim}_a(V) = \frac{1}{2} \text{codim}(V)$.

Theorem (Liu-M.-Wang ’18)

A constructible complex $\mathcal{F} \in D^b_c(G, \mathbb{C})$ is perverse on G \iff

(i) $\text{codim}_a \mathcal{V}^i(G, \mathcal{F}) \geq i$ for any $i \geq 0$, and

(ii) $\text{codim}_{sa} \mathcal{V}^i(G, \mathcal{F}) \geq -i$ for any $i \leq 0$.

Corollary

$\mathcal{F} \in D^b_c(T, \mathbb{C})$ is perverse on a complex affine torus T \iff

(i) For any $i > 0$: $\mathcal{V}^i(T, \mathcal{F}) = \emptyset$, and

(ii) For any $i \leq 0$: $\text{codim} \mathcal{V}^i(T, \mathcal{F}) \geq -i$.
Thank you !
Thank you!

Happy Birthday, Sylvain!