Perturbation theory in “non-perturbative” regimes

Evgeny Kozik

2018 Many Electron Collaboration Meeting, February 16 2018
Group at Kings’:

Fedor Šimkovic

Aaram Kim

Arkadiy Davydov

ME Collaborators:

Alice Moutenet
Wei Wu
Michel Ferrero
Antoine Georges

(Cluster Embeddings Group)

Igor Tupitsyn
Nikolay Prokof’ev
Boris Svistunov
James LeBlanc
Youjin Deng

(Monte Carlo Group)

Funding:

SIMONS FOUNDATION
ME Collaboration

EPSRC
Engineering and Physical Sciences Research Council
Main results:

- Determinantal diagrammatic Monte Carlo for the self-energy allows to compute diagram orders as high as ~ 10 in strongly correlated regimes numerically exactly with arbitrary k-resolution.

2D Hubbard model $T=0.2t$, $U=7t$, $n=0.935(1)$:

$$\Sigma(k, \omega) = \sum_n a_n U^n$$

but the series is typically divergent!

- Access to high orders reveals the analytic structure of the self-energy and allows to reconstruct it reliably from its series by resummation techniques.

Šimkovic, Kozik, arXiv:1712.10001
Conclusions/Outlook:

- Self-energy can be systematically reconstructed from divergent series in principle all the way to the nearest critical point.
 - Pushing the technique to higher orders brings its applicability range closer to the critical point ➞ further analysis of the series structure may enable this.

- The approach already gives controlled results immediately in the TD limit in truly correlated regimes currently inaccessible by other methods.
 - Lots of exciting physics is within reach: accurate equations of state (e.g. for current cold-atom experiments), pseudo-gap physics, phase separation, etc.

- Diagram orders ~10 are sufficient for detecting phase transitions as singularities of the series solution (extremely difficult for fine-size methods!).
 - We may have a powerful tool for studies of critical phenomena.