Spherical spin glass models

Eliran Subag
February 24, 2018
Courant Institute
Spin glasses

Glass *(positional disorder)*
Amorphous solid lacking periodic structure. Formed by rapid cooling.

Spin Glass *(magnetic disorder)*
Disordered magnet. Spins are not aligned in a regular structure.
Spin glass models on the lattice (Edwards-Anderson)

- **Configuration space:**

Assignments of $+1$ and -1 to the sites of the lattice.

$x = (x_1, x_2, \ldots, x_N), \ x_i \in \{+1, -1\}, \ N = n^2$

$\begin{array}{c}
\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\
\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \\
\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\
\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \\
\uparrow \downarrow \downarrow \uparrow \downarrow \uparrow \\
\downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\
\uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \\
\downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\
\uparrow \downarrow \downarrow \uparrow \downarrow \uparrow \\
\downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \\
\end{array}$
Spin glass models on the lattice (Edwards-Anderson)

- **Configuration space:**

 Assignments of $+1$ and -1 to the sites of the lattice.

 $x = (x_1, x_2, \ldots, x_N), \ x_i \in \{+1, -1\}, \ N = n^2$

- **(Random) Energy function:**

 Associate to each configuration x an energy:

 $$H_N(x) = \sum_{i \sim j} J_{ij} x_i x_j.$$

 $J_{ij} \sim N(0, 1)$, independent, $i \sim j = “$neighboring sites”$.
Spin glass models on the lattice (Edwards-Anderson)

- **Configuration space:**

Assignments of +1 and −1 to the sites of the lattice.

\[x = (x_1, x_2, \ldots, x_N), \quad x_i \in \{+1, -1\}, \quad N = n^2 \]

- **(Random) Energy function:**

Associate to each configuration \(x \) an energy:

\[H_N(x) = \sum_{i \sim j} J_{ij} x_i x_j. \]

\(J_{ij} \sim N(0, 1) \), independent, \(i \sim j = “\text{neighboring sites”} \).

Configurations with low energy?
Spin glass models on the lattice (Edwards-Anderson)

- **Configuration space:**

Assignments of +1 and −1 to the sites of the lattice.
\[x = (x_1, x_2, \ldots, x_N), \quad x_i \in \{+1, -1\}, \quad N = n^2 \]

\[
\begin{array}{cccccccc}
\uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow \\
\uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow \\
\uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow \\
\end{array}
\]

- **(Random) Energy function:**

Associate to each configuration \(x \) an energy:
\[
H_N(x) = \sum_{i \sim j} J_{ij} x_i x_j.
\]

\(J_{ij} \sim N(0, 1) \), independent, \(i \sim j = \text{“neighboring sites”} \).

Configurations with low energy? **Too difficult!!!**
Spherical spin glass models

We modify the model:

1. "Mean-field" model: all spins interact with each other,
 \[H_N(x) = \frac{1}{\sqrt{N}} \sum_{1 \leq i, j \leq N} J_{ij} x_i x_j. \]

2. Change the configuration space: the spins \(x_i \) are allowed to take real values instead of \(\pm 1 \), however, still with \(\|x\| = \sqrt{\sum x_i^2} = \sqrt{N} \).

3. Generalize to \(p \)-body interactions with general \(p \geq 2 \),
 \[H_N(x) = \frac{1}{N^{p-1}/2} \sum_{1 \leq i_1, \ldots, i_p \leq N} J_{i_1, \ldots, i_p} x_{i_1} \cdots x_{i_p}. \]
Spherical spin glass models

We modify the model:

1. **“Mean-field”** model: all spins interact with each other,
 \[
 H_N(x) = \frac{1}{\sqrt{N}} \sum_{1 \leq i, j \leq N} J_{ij} x_i x_j.
 \]
Spherical spin glass models

We modify the model:

1. **“Mean-field”** model: all spins interact with each other,

\[H_N(x) = \frac{1}{\sqrt{N}} \sum_{1 \leq i, j \leq N} J_{ij} x_i x_j. \]

2. **Change the configuration space:** the spins \(x_i \) are allowed to take real values instead of \(\pm 1 \), however, still with

\[\|x\| = \sqrt{\sum x_i^2} = \sqrt{N}. \]
Spherical spin glass models

We modify the model:

1. **“Mean-field”** model: all spins interact with each other,

 \[H_N(x) = \frac{1}{\sqrt{N}} \sum_{1 \leq i, j \leq N} J_{ij} x_i x_j. \]

2. **Change the configuration space:** the spins \(x_i \) are allowed to take real values instead of \(\pm 1 \), however, still with

 \[\|x\| = \sqrt{\sum x_i^2} = \sqrt{N}. \]

3. Generalize to \(p \)-body interactions with general \(p \geq 2 \),

 \[H_N(x) = \frac{1}{N^{(p-1)/2}} \sum_{1 \leq i_1, \ldots, i_p \leq N} J_{i_1, \ldots, i_p} x_{i_1} \cdots x_{i_p}. \]
Spherical spin glass models

\[H_N(x) = \frac{1}{N^{(p-1)/2}} \sum_{1 \leq i_1, \ldots, i_p \leq N} J_{i_1, \ldots, i_p} x_{i_1} \cdots x_{i_p} \]

is a random energy landscape on \(S^{N-1}(\sqrt{N}) \) the sphere of radius \(\sqrt{N} \) in \(\mathbb{R}^N \). We are interested in very large dimension \(N \).
- At equilibrium the spin system should have low energy.
Low energies

- At equilibrium the spin system should have low energy.
- How many “valleys” are there at any depth?
Local minima

Theorem (Auffinger-Ben Arous-Černý, ‘13; S. ‘16)

The number of local minima below $-NE \approx e^{N\Theta_p(-E)}$.
Equilibrium (Gibbs/Boltzmann) distribution

- The equilibrium (Gibbs/Boltzmann) density at temperature T is

$$f(x) = e^{-\frac{1}{T}H_N(x)/Z}.$$

- Z is chosen so that the total mass is 1.

- At equilibrium

$$\text{Prob}\left\{ \text{spins configuration } \in A \right\} = \int_A f(x) \, dx.$$
The equilibrium (Gibbs/Boltzmann) density at temperature T is
\[
f(x) = e^{-\frac{1}{T}H_N(x)} / Z.\]

Z is chosen so that the total mass is 1.

At equilibrium
\[
\text{Prob}\left\{\text{spins configuration } \in A\right\} = \int_A f(x) dx.
\]

What are the most probable configurations?
Equilibrium (Gibbs/Boltzmann) distribution

- Which valleys carry most of the distribution?

$$f(x) = e^{-\frac{1}{T}H_N(x) / Z}$$

- exp. more valleys
- exp. larger density
Equilibrium (Gibbs/Boltzmann) distribution

Theorem

For low temperature T, 99% of the distribution concentrates on a few of the deepest valleys.
Theorem

For low temperature T, 99% of the distribution concentrates on a few of the deepest valleys.
Thank You!