Snapshot 2: Matching and the New York Sanitation Department

Margaret H. Wright
Computer Science Department
Courant Institute of Mathematical Sciences
New York University

Simons Society of Fellows Retreat
February 24, 2018
How it began (October 24, 2017)

From: Russel E Caflisch <caflisch@courant.nyu.edu>

I received a request for help from Joel Binn with an optimization problem.

NYC has 10^4 employees, who can make requests for job changes within the city government. The priority of these choices is supposed to be ordered by seniority. But they have the issue that a job change by a lower priority employee could open up a position that is desired by a higher priority employee. So this requires iteration, which they now perform by hand. They are looking for a researcher who could work with them and write an algorithm that would solve this problem.
I was (very) interested—Bell Labs nostalgia—and began talking to the NYSD people.

Initially I was misled by the term “optimization” in the NYSD’s description of the problem. I pictured formulating it as an integer programming problem with nonlinear constraints.

But it soon became clear that this is a matching problem, involving discrete objects (in this case, locations to which workers can request to transfer).

Some well known examples of matching problems are: locations for medical residencies; organization of donors/recipients of kidney transplants; and allocation of housing by universities.

I knew almost nothing about matching! (But I was happy to learn.)
A key feature of the NYSD problem is that it does not involve “big data”. There are approximately 1000 different locations in the NYSD system, and two or three times each year several hundred workers are allowed to request transfers.

Possibly the most important point about the NYSD problem is that seniority is an absolute priority. A second crucial feature is that someone who wants to keep his/her location cannot be forced to move.

Using a so-called “serial dictatorship”, meaning going down the list in priority order, giving each person the location he/she wants if it is available, does not solve the problem. (It would, if all positions were considered to be vacant at the beginning of each round of transfer requests.)
Here’s an example of why this is unsatisfactory.

Suppose that there are 3 agents, a_1, a_2, a_3, with seniority in that order. Initially, a_1 is in position h_{10}, a_2 is in position h_8, and a_3 is in position h_7.

Suppose that a_1’s top choice is h_8, with second preference h_9; a_2’s top preference is h_{10}; and a_3’s top choice is h_8.

At the beginning, a_1 cannot have h_8 because it is occupied by a_2, so a_1 is moved to h_9 (his/her second choice) leaving h_{10} available. Now it is the turn of a_2, who is able to have his/her top choice of h_{10}, thereby making h_8 available. So when we reach a_3, he/she can move to h_8.

This is unacceptable because a_3, who has lower seniority than a_1, is getting h_8, which was the first choice of a_1.

This leads to a union grievance!
There are many papers, mostly in the economics literature, about housing problems. In 1999, Abdulkadiroğlu and Sönmez published a paper about “housing allocation with existing tenants”, which, it turns out, is the same problem as NYSD’s.

A&S proposed an algorithm with an incredibly evocative name:

You Request My House; I Get Your Turn

called YRMH-IGYT.
This algorithm does exactly what its name says: the list of transfer requests is traversed in order of seniority, assigning locations as long as there is no conflict. But when a_k, who has priority k, requests a house that is occupied by a_m, where $m > k$ (so that a_k has higher priority than a_m), a_m “gets the turn of” a_k, and the process continues from there.

In the example above, the solution is simple: a_1 requests the house of a_2, so a_2 is inserted before a_1. Since a_2's top choice is actually the house of a_1, a trivial cycle has been created: a_1 gets h_8 and a_2 gets h_{10}.

It can be shown that, by completing such cycles and then removing them from the transfer process, the method must terminate. In addition, it has many splendid properties.
A very satisfying outcome for all parties!