Computations on K3 surfaces
Past, Present and Future

Anthony Várilly-Alvarado
Rice University

Simons Collaboration on Arithmetic Geometry, Number Theory, and Computation Annual Meeting
Motivation: torsion on elliptic curves

E / \mathbb{Q} an elliptic curve:

\[y^2 = x^3 + Ax + B \quad 4A^3 + 27B^2 \neq 0. \]
Motivation: torsion on elliptic curves

\[E / \mathbb{Q} \text{ an elliptic curve:} \]
\[y^2 = x^3 + Ax + B \quad 4A^3 + 27B^2 \neq 0. \]

Theorem (Mordell, 1922)
\[E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text{tors}} \times \mathbb{Z}^r. \]
Motivation: torsion on elliptic curves

E/\mathbb{Q} an elliptic curve:

$$y^2 = x^3 + Ax + B \quad 4A^3 + 27B^2 \neq 0.$$

Theorem (Mordell, 1922)

$E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text{tors}} \times \mathbb{Z}^r$.

Theorem (Mazur, 1977)

$E(\mathbb{Q})_{\text{tors}}$ is isomorphic to one of the following 15 groups:

$$\mathbb{Z}/n\mathbb{Z} \quad 1 \leq n \leq 10, \text{ or } n = 12, \quad \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z} \quad 1 \leq n \leq 4.$$
Motivation: torsion on elliptic curves

Theorem (Merel, 1996)

Fix \(d \in \mathbb{Z}_{>0} \). There is an integer \(c = c(d) \) such that:

For all number fields \(k \) with \([k : \mathbb{Q}] = d \) and all elliptic curves \(E/k \),

\[\#E(k)_{\text{tors}} < c. \]
Motivation: torsion on elliptic curves

Theorem (Merel, 1996)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer $c = c(d)$ such that:

For all number fields k with $[k : \mathbb{Q}] = d$ and all elliptic curves E/k,

$$\#E(k)_{\text{tors}} < c.$$

Question

Is there a Merel theorem for K3 surfaces?
K3 surfaces

K3 surface: smooth, projective, geometrically integral;
\[\omega_X \cong \mathcal{O}_X \text{ and } h^1(X, \mathcal{O}_X) = 0. \]
K3 surfaces

K3 surface: smooth, projective, geometrically integral;
\[\omega_X \cong \mathcal{O}_X \text{ and } h^1(X, \mathcal{O}_X) = 0. \]

Examples

- \[w^2 = x^6 + y^6 + z^6 \text{ in } \mathbb{P}(1,1,1,3) \text{ (degree 2).} \]
- \[x^4 + y^4 = z^4 + w^4 \text{ in } \mathbb{P}^3 \text{ (degree 4).} \]
K3 surfaces

K3 surface: smooth, projective, geometrically integral;
\(\omega_X \cong \mathcal{O}_X \) and \(h^1(X, \mathcal{O}_X) = 0 \).

Examples

- \(w^2 = x^6 + y^6 + z^6 \) in \(\mathbb{P}(1, 1, 1, 3) \) (degree 2).
- \(x^4 + y^4 = z^4 + w^4 \) in \(\mathbb{P}^3 \) (degree 4).

Problem: K3 surfaces have no group structure.
K3 surfaces

K3 surface: smooth, projective, geometrically integral; \(\omega_X \cong \mathcal{O}_X \) and \(h^1(X, \mathcal{O}_X) = 0 \).

Examples

- \(w^2 = x^6 + y^6 + z^6 \) in \(\mathbb{P}(1,1,1,3) \) (degree 2).
- \(x^4 + y^4 = z^4 + w^4 \) in \(\mathbb{P}^3 \) (degree 4).

Problem: K3 surfaces have no group structure.

Replacement for \(E(k)_{\text{tors}} \)?
Reinterpreting $E(k)_{\text{tors}}$

$$E(k)_{\text{tors}} \simeq (\text{Pic}^0 E)_{\text{tors}}$$
Reinterpreting $E(k)_{\text{tors}}$

\[E(k)_{\text{tors}} \cong (\text{Pic}^0 E)_{\text{tors}} \]
\[= (\text{Pic} E)_{\text{tors}} \]
Reinterpreting $E(k)_{tors}$

$$E(k)_{tors} \cong (\text{Pic}^0 E)_{tors}$$
$$= (\text{Pic} E)_{tors}$$
$$\cong H^1(E, \mathcal{O}_E)_{tors}$$
Reinterpreting $E(k)_{\text{tors}}$

\[
E(k)_{\text{tors}} \cong (\text{Pic}^0 E)_{\text{tors}}
= (\text{Pic} E)_{\text{tors}}
\cong H^1(E, \mathcal{O}_E^\times)_{\text{tors}}
\cong H^1_{\text{et}}(E, \mathbb{G}_m)_{\text{tors}}
\]

Note: Hilbert 90 implies $\ker(H^1_{\text{et}}(E, \mathbb{G}_m)_{\text{tors}} \to H^1_{\text{et}}(E, \mathbb{G}_m)) \cong H^1_{\text{et}}(\text{Spec } k, \mathbb{G}_m) = 0$.

Reinterpreting $E(k)_{\text{tors}}$

$$E(k)_{\text{tors}} \simeq (\text{Pic}^0 E)_{\text{tors}}$$
$$= (\text{Pic } E)_{\text{tors}}$$
$$\simeq H^1(E, \mathcal{O}_E^\times)_{\text{tors}}$$
$$\simeq H^1_{\text{et}}(E, \mathbb{G}_m)_{\text{tors}}$$
$$\simeq \text{im}\left(H^1_{\text{et}}(E, \mathbb{G}_m)_{\text{tors}} \to H^1_{\text{et}}(\overline{E}, \mathbb{G}_m)_{\text{tors}}\right)$$
Reinterpreting $E(k)_{\text{tors}}$

\[
E(k)_{\text{tors}} \cong (\text{Pic}^0 E)_{\text{tors}} \\
= (\text{Pic } E)_{\text{tors}} \\
\cong H^1(E, \mathcal{O}_E^\times)_{\text{tors}} \\
\cong H^1_{\text{et}}(E, \mathbb{G}_m)_{\text{tors}} \\
\cong \text{im} \left(H^1_{\text{et}}(E, \mathbb{G}_m)_{\text{tors}} \to H^1_{\text{et}}(\overline{E}, \mathbb{G}_m)_{\text{tors}} \right)
\]

Note: Hilbert 90 implies

\[
\ker \left(H^1_{\text{et}}(E, \mathbb{G}_m)_{\text{tors}} \to H^1_{\text{et}}(\overline{E}, \mathbb{G}_m)_{\text{tors}} \right) \cong H^1_{\text{et}}(\text{Spec } k, \mathbb{G}_m) = 0.
\]
Transcendental Brauer groups

For a K3 surface over a number field k, use

$$\text{im}(H^2_{\text{et}}(X, \mathbb{G}_m)_{\text{tors}} \rightarrow H^2_{\text{et}}(\overline{X}, \mathbb{G}_m)_{\text{tors}})$$

$\text{Br}(X)$ \rightarrow $\text{Br}(\overline{X})$
For a K3 surface over a number field k, use

$$\text{im} \left(\underbrace{H^2_{\text{et}}(X, \mathbb{G}_m)_{\text{tors}}}_{\text{Br}(X)} \rightarrow \underbrace{H^2_{\text{et}}(\overline{X}, \mathbb{G}_m)_{\text{tors}}}_{\text{Br}(\overline{X})} \right)$$

First isomorphism theorem:

$$\text{im}(\text{Br}(X) \rightarrow \text{Br}(\overline{X})) \cong \frac{\text{Br}(X)}{\ker(\text{Br}(X) \rightarrow \text{Br}(\overline{X}))}$$

$Br_1(X)$ is the transcendental Brauer group of X. Note: There is a natural injection $\text{Br}(X)/Br_1(X) \rightarrow \text{Br}(X)_{\text{Gal}(k/k)}$.
Transcendental Brauer groups

For a K3 surface over a number field k, use

$$\text{im}(\text{Br}(X) \to \text{Br}(\bar{X})) \cong \text{Br}(X)/\text{ker}(\text{Br}(X) \to \text{Br}(\bar{X}))$$

First isomorphism theorem:

$$\text{Br}(X)/\text{Br}_1(X)$$ is the transcendental Brauer group of X.

Note: There is a natural injection $\text{Br}(X)/\text{Br}_1(X) \hookrightarrow \text{Br}(\bar{X})^{\text{Gal}(\bar{k}/k)}$.
Is $\text{Br}(X)/\text{Br}_1(X)$ important?

There is a filtration of the Brauer group $\text{Br}_0(X) \subseteq \text{im}(\text{Br}(\text{Spec} k) \to \text{Br}(X)) \subseteq \text{Br}_1(X) \subseteq \ker(\text{Br}(X) \to \text{Br}(X)) \subseteq \text{Br}(X)$.

Conjecture (Skorogobatov 2009) The group $\text{Br}(X)/\text{Br}_0(X)$ controls all failures of the Hasse principle on K3 surfaces over number fields. We will come back to the quotient $\text{Br}_1(X)/\text{Br}_0(X)$ shortly.
Is $\text{Br}(X)/\text{Br}_1(X)$ important?

There is a filtration of the Brauer group

$$\underbrace{\text{Br}_0(X)} \subseteq \underbrace{\text{Br}_1(X)} \subseteq \text{Br}(X)$$

$$\text{im}(\text{Br}(ext{Spec } k) \rightarrow \text{Br}(X)) \quad \text{ker}(\text{Br}(X) \rightarrow \text{Br}(\overline{X}))$$

Conjecture (Skorogobatov 2009)

The group $\text{Br}(X)/\text{Br}_0(X)$ controls all failures of the Hasse principle on K3 surfaces over number fields.

We will come back to the quotient $\text{Br}_1(X)/\text{Br}_0(X)$ shortly.
Is $\text{Br}(X)/\text{Br}_1(X)$ important?

There is a filtration of the Brauer group

$$\underbrace{\text{Br}_0(X)} \subseteq \underbrace{\text{Br}_1(X)} \subseteq \text{Br}(X)$$

$$\text{im} \left(\text{Br}(\text{Spec } k) \rightarrow \text{Br}(X) \right) \subseteq \ker \left(\text{Br}(X) \rightarrow \text{Br}(\bar{X}) \right)$$

Conjecture (Skorogobatov 2009)

The group $\text{Br}(X)/\text{Br}_0(X)$ controls all failures of the Hasse principle on K3 surfaces over number fields.
Is $\text{Br}(X)/\text{Br}_1(X)$ important?

There is a filtration of the Brauer group

$$\underbrace{\text{Br}_0(X)} \subseteq \underbrace{\text{Br}_1(X)} \subseteq \text{Br}(X)$$

$$\text{im}\left(\text{Br}(\text{Spec } k) \to \text{Br}(X)\right) \quad \text{ker}\left(\text{Br}(X) \to \text{Br}(\bar{X})\right)$$

Conjecture (Skorogobatov 2009)

The group $\text{Br}(X)/\text{Br}_0(X)$ controls all failures of the Hasse principle on $K3$ surfaces over number fields.

We will come back to the quotient $\text{Br}_1(X)/\text{Br}_0(X)$ shortly.
Is $\text{Br}(X)/\text{Br}_1(X)$ finite?

$E(k)_{\text{tors}}$ is finite. Is the K3 analogue $\text{Br}(X)/\text{Br}_1(X)$ finite?
Is $\text{Br}(X)/\text{Br}_1(X)$ finite?

$E(k)_{\text{tors}}$ is finite. Is the K3 analogue $\text{Br}(X)/\text{Br}_1(X)$ finite?

Theorem (Skorobogatov–Zarhin 2008)

Let k/\mathbb{Q} be a finitely generated field; let X/k be a K3 surface. Then $\text{Br}(X)/\text{Br}_1(X)$ and $\text{Br}(\overline{X})^{\text{Gal}(\overline{k}/k)}$ are finite.
Uniform boundedness conjectures

For X/C a K3 surface, always have $H^2(X,\mathbb{Z}) \cong U \oplus 3 \oplus E_8(-1) \oplus 2$.

We call $\Lambda_{K3} = U \oplus 3 \oplus E_8(-1) \oplus 2$ the K3 lattice.

$\text{NS}(X)$ embeds primitively in $H^2(X,\mathbb{Z})$.

Conjecture (Weak uniform boundedness (V.-A. 2015))

Fix a number field k and a primitive sublattice $\Lambda \subset \Lambda_{K3}$.

There is an integer $B = B(k,\Lambda)$ such that:

For all K3 surfaces X/k with $\Lambda \to \text{NS}(X)$,

$\# \text{Br}(X)/\text{Br}_1(X) < B$.

Uniform boundedness conjectures

For X/\mathbb{C} a K3 surface, always have $H^2(X, \mathbb{Z}) \cong U^3 \oplus E_8(-1)^2$.
Uniform boundedness conjectures

For X/\mathbb{C} a K3 surface, always have $H^2(X, \mathbb{Z}) \cong U^3 \oplus E_8(-1)^2$. We call $\Lambda_{K3} := U^3 \oplus E_8(-1)^2$ the K3 lattice.
Uniform boundedness conjectures

For X/\mathbb{C} a K3 surface, always have $H^2(X, \mathbb{Z}) \cong U^3 \oplus E_8(-1)^2$.

We call $\Lambda_{K3} := U^3 \oplus E_8(-1)^2$ the K3 lattice.

$NS(X)$ embeds primitively in $H^2(X, \mathbb{Z})$.
Uniform boundedness conjectures

For X/\mathbb{C} a K3 surface, always have $H^2(X, \mathbb{Z}) \cong U^\oplus 3 \oplus E_8(-1)^\oplus 2$.

We call $\Lambda_{K3} := U^\oplus 3 \oplus E_8(-1)^\oplus 2$ the K3 lattice.

$NS(X)$ embeds primitively in $H^2(X, \mathbb{Z})$.

Conjecture (Weak uniform boundedness (V.-A. 2015))

Fix a number field k and a primitive sublattice $\Lambda \subset \Lambda_{K3}$.

There is an integer $B = B(k, \Lambda)$ such that:

For all K3 surfaces X/k with $\Lambda \hookrightarrow NS(X)$,

$$\#Br(X)/Br_1(X) < B.$$
Remarks

Could ask for $B(k, \Lambda)$ instead of $B(k, \Lambda)$ (strong uniform boundedness).

Weak Shafarevich conjecture (1994): for fixed number field k, there are only finitely many possibilities for $\text{NS}(X)$.

\implies can dispense with Λ in the conjecture.

Strong Shafarevich conjecture: for fixed $[k: \mathbb{Q}]$, there are only finitely many possibilities for $\text{NS}(X)$.

\implies can dispense with Λ in the strong version of the conjecture.
Remarks

- Could ask for $B([k : \mathbb{Q}], \Lambda)$ instead of $B(k, \Lambda)$ (strong uniform boundedness).
Remarks

- Could ask for $B([k : \mathbb{Q}], \Lambda)$ instead of $B(k, \Lambda)$ (strong uniform boundedness).

- **Weak Shafarevich conjecture (1994):** for fixed number field k, there are only finitely many possibilities for $\text{NS}(\bar{X})$.
 \[\implies\text{can dispense with } \Lambda \text{ in the conjecture.}\]
Remarks

- Could ask for $B([k : \mathbb{Q}], \Lambda)$ instead of $B(k, \Lambda)$ (strong uniform boundedness).

- Weak Shafarevich conjecture (1994): for fixed number field k, there are only finitely many possibilities for $\text{NS}(\mathcal{X})$.
 \[\implies\text{can dispense with }\Lambda\text{ in the conjecture.}\]

- Strong Shafarevich conjecture: for fixed $[k : \mathbb{Q}]$, there are only finitely many possibilities for $\text{NS}(\mathcal{X})$.
 \[\implies\text{can dispense with }\Lambda\text{ in the strong version of the conjecture.}\]
Conjecture (Strong unif. boundedness + strong Shafarevich)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer $B = B(d)$ such that:
For all number fields k with $[k : \mathbb{Q}] = d$ and all K3 surfaces X/k,

$$\#\text{Br}(X)/\text{Br}_1(X) < B.$$
Conjecture (Strong unif. boundedness + strong Shafarevich)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer $B = B(d)$ such that:

For all number fields k with $[k : \mathbb{Q}] = d$ and all K3 surfaces X/k,

$$\# \text{Br}(X)/\text{Br}_1(X) < B.$$

This should be the K3 analogue of Merel’s theorem.
While we are dreaming...

Assume the K3 analogue of Merel's Theorem.
Assume Skorobogatov's conjecture.
Then work of Kresch–Tschinkel and Charles implies:

Conjecture
There is an effective algorithm that takes as input the equations of a K3 surface X over a number field k and determines whether $X(k)$ is empty.
While we are dreaming...

Assume the K3 analogue of Merel’s Theorem.
While we are dreaming...

Assume the K3 analogue of Merel’s Theorem.

Assume Skorobogatov’s conjecture.
While we are dreaming...

Assume the K3 analogue of Merel’s Theorem.

Assume Skorobogatov’s conjecture.

Then work of Kresch–Tschinkel and Charles implies:

Conjecture

There is an effective algorithm that takes as input the equations of a K3 surface X over a number field k and determines whether $X(k)$ is empty.
What about $\text{Br}_1(X)/\text{Br}_0(X)$?
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Let X be a smooth projective variety over a field k with $\text{char } k = 0$. Assume that $\text{Pic}(\overline{X}) \cong \mathbb{Z}^r$. Then there is an integer $M = M(r)$, independent of X, such that $\# \text{Br}_1(X)/\text{Br}_0(X) < M$.

Idea of the proof.

1. Pass to a finite Galois extension K/k such that $\text{Pic}(\overline{X}_K) \cong \mathbb{Z}^r$.
2. Hochschild–Serre $\Rightarrow \text{Br}_1(X)/\text{Br}_0(X) \cong H^1(\text{Gal}(K/k), \mathbb{Z}^r)$.
3. $H^1(G, \mathbb{Z}^r) \cong (\mathbb{Z}^r/|G|) \otimes \mathbb{Z}/|G|$ where $G = \text{Gal}(K/k)$.
4. G acts through a finite subgroup of $\text{GL}_r(\mathbb{Z})$ (only finitely many possibilities).
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Let X be a smooth projective variety over a field k with $\text{char } k = 0$. Assume that $\text{Pic}(\overline{X}) \cong \mathbb{Z}^r$. Then there is an integer $M = M(r)$, independent of X, such that $\# \text{Br}_1(X)/\text{Br}_0(X) < M$.

Idea of the proof.

1. Pass to a finite Galois extension K/k such that $\text{Pic}(X_K) \cong \mathbb{Z}^r$.
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Lemma (V.-A., Viray 2017)

Let X be a smooth projective variety over a field k with $\text{char } k = 0$. Assume that $\text{Pic}(\overline{X}) \cong \mathbb{Z}^r$. Then there is an integer $M = M(r)$, independent of X, such that $\# \text{Br}_1(X)/\text{Br}_0(X) < M$.

Idea of the proof.

1. Pass to a finite Galois extension K/k such that $\text{Pic}(X_K) \cong \mathbb{Z}^r$.
2. Hochschild–Serre $\implies \text{Br}_1(X)/\text{Br}_0(X) \cong H^1(\text{Gal}(K/k), \mathbb{Z}^r)$.
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Let X be a smooth projective variety over a field k with char $k = 0$. Assume that Pic(\overline{X}) $\cong \mathbb{Z}^r$. Then there is an integer $M = M(r)$, independent of X, such that $\# \text{Br}_1(X)/\text{Br}_0(X) < M$.

Idea of the proof.

1. Pass to a finite Galois extension K/k such that Pic(X_K) $\cong \mathbb{Z}^r$.
2. Hochschild–Serre $\implies \text{Br}_1(X)/\text{Br}_0(X) \cong H^1(\text{Gal}(K/k), \mathbb{Z}^r)$.
3.
 \[
 H^1(G, \mathbb{Z}^r) \cong \frac{(\mathbb{Z}^r/|G|)^G}{(\mathbb{Z}^r)^G/(|G|)} \quad \text{where} \quad G = \text{Gal}(K/k).
 \]
 $\implies \#H^1(G, \mathbb{Z}^r)$ divides $|G|^r$, regardless of action.
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Let X be a smooth projective variety over a field k with $\text{char } k = 0$. Assume that $\text{Pic} (\overline{X}) \cong \mathbb{Z}^r$. Then there is an integer $M = M(r)$, independent of X, such that $\# \text{Br}_1(X)/\text{Br}_0(X) < M$.

Idea of the proof.

1. Pass to a finite Galois extension K/k such that $\text{Pic}(X_K) \cong \mathbb{Z}^r$.
2. Hochschild–Serre $\implies \text{Br}_1(X)/\text{Br}_0(X) \cong H^1(\text{Gal}(K/k), \mathbb{Z}^r)$.
3.

$$H^1(G, \mathbb{Z}^r) \cong \frac{(\mathbb{Z}^r/|G|)^G}{(\mathbb{Z}^r)^G/(|G|)} \quad \text{where } G = \text{Gal}(K/k).$$

$\implies \#H^1(G, \mathbb{Z}^r)$ divides $|G|^r$, regardless of action.

4. G acts through a finite subgroup of $\text{GL}_r(\mathbb{Z})$ (only finitely many possibilities).
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Corollary

There is an absolute constant M such that, for all K3 surfaces X over a field, we have

$$\#\text{Br}_1(X)/\text{Br}_0(X) < M.$$
What about $\operatorname{Br}_1(X)/\operatorname{Br}_0(X)$?

Corollary

There is an absolute constant M such that, for all K3 surfaces X over a field, we have

$$\#\operatorname{Br}_1(X)/\operatorname{Br}_0(X) < M.$$

Proof.

$\operatorname{Pic}(\overline{X}) = \operatorname{Pic}(X_{k_{\text{sep}}})$ is free of rank $r \leq 20$.

Apply (proof of!) the lemma for $1 \leq r \leq 20$; add up bounds to get M. \qed
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Question

What can $\text{Br}_1(X)/\text{Br}_0(X)$ be for a K3 surface over a field?
What about $\text{Br}_1(X)/\text{Br}_0(X)$?

Question

What can $\text{Br}_1(X)/\text{Br}_0(X)$ be for a K3 surface over a field?

For example, if $\text{Pic}(\overline{X}) \cong \mathbb{Z}$ then $\text{Br}_1(X)/\text{Br}_0(X) = 0$.
What about $\operatorname{Br}_1(X)/\operatorname{Br}_0(X)$?

Question

What can $\operatorname{Br}_1(X)/\operatorname{Br}_0(X)$ be for a K3 surface over a field?

For example, if $\operatorname{Pic}(\bar{X}) \cong \mathbb{Z}$ then $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) = 0$.

Theorem (Wolff, 2018)

Let X be a K3 surface over a field such that $\operatorname{Pic}(\bar{X}) \cong \mathbb{Z}^2$. Then $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) = 0$.
ℓ-primary boundedness: an easier conjecture?

Conjecture (ℓ-primary boundedness)
Fix a number field k, a prime ℓ, and a primitive sublattice $\Lambda \subset \Lambda_{K3}$.

There is an integer $B = B(k, \Lambda, \ell)$ such that for all $K3$ surfaces X/k with $\Lambda \hookrightarrow \text{NS}(X)$,

$$\#(\text{Br}(X)/\text{Br}_1(X))[\ell^\infty] < B.$$
ℓ-primary boundedness: an easier conjecture?

Conjecture (ℓ-primary boundedness)

Fix a number field k, a prime ℓ, and a primitive sublattice $\Lambda \subset \Lambda_{K3}$. There is an integer $B = B(k, \Lambda, \ell)$ such that for all $K3$ surfaces X/k with $\Lambda \hookrightarrow \text{NS}(X)$,

$$\#(\text{Br}(X)/\text{Br}_1(X))[\ell^\infty] < B.$$

Strong version: replace $B(k, \Lambda, \ell)$ with $B([k: \mathbb{Q}], \Lambda, \ell)$.

ℓ-primary boundedness: an easier conjecture?

Conjecture (ℓ-primary boundedness)

Fix a number field k, a prime ℓ, and a primitive sublattice $\Lambda \subset \Lambda_{K3}$.

There is an integer $B = B(k, \Lambda, \ell)$ such that for all $K3$ surfaces X/k with $\Lambda \hookrightarrow \text{NS}(X)$,

$$\#(\text{Br}(X)/\text{Br}_1(X))[\ell^\infty] < B.$$

Strong version: replace $B(k, \Lambda, \ell)$ with $B([k:Q], \Lambda, \ell)$.

After all, before Merel, there was Manin...

Theorem (Manin 1969)

Fix a number field k and a prime ℓ. There is an integer $c = c(k, \ell)$ such that for all elliptic curves E/k,

$$\#E(k)[\ell^\infty] < c.$$
Evidence

I Kodaira dimension estimates for relevant moduli problem.
 Joint work with Tanimoto; Mckinnie, Sawon, and Tanimoto.

II Conditional analogues in the case of full-level structures for abelian varieties.
 Joint work with Abramovich.

III Special cases:
 i. Verification for some lattices Λ of rank 19.
 Joint work with Viray.
 ii. The CM case. (Gives Merel-type result for $K3$s with $\rho = 20$.)
 Skorobogatov/Orr. Further work by Valloni.
 iii. ℓ-primary boundedness for 1-dimensional families.
 Cadoret/Charles + Ambrosi.
Evidence

I Kodaira dimension estimates for relevant moduli problem.
 Joint work with Tanimoto; Mckinnie, Sawon, and Tanimoto.

II Conditional analogues in the case of full-level structures for abelian varieties.
 Joint work with Abramovich.

III Special cases:
 i. Verification for some lattices Λ of rank 19.
 Joint work with Viray.
 ii. The CM case. (Gives Merel-type result for $K3$s with $\rho = 20$.)
 Skorobogatov/Orr. Further work by Valloni.
 iii. ℓ-primary boundedness for 1-dimensional families.
 Cadoret/Charles + Ambrosi.
Evidence

I Kodaira dimension estimates for relevant moduli problem.
Joint work with Tanimoto; Mckinnie, Sawon, and Tanimoto.

II Conditional analogues in the case of full-level structures for abelian varieties.
Joint work with Abramovich.

III Special cases:
 i. Verification for some lattices Λ of rank 19.
 Joint work with Viray.
 ii. The CM case. (Gives Merel-type result for K3s with $\rho = 20$.)
 Skorobogatov/Orr. Further work by Valloni.
 iii. ℓ-primary boundedness for 1-dimensional families.
 Cadoret/Charles + Ambrosi
III. Special cases: 1-parameter families of Kummer surfaces

Fix a number field k, as well as non-CM elliptic curves E, E' with a cyclic isogeny of minimal degree d between them.
III. Special cases: 1-parameter families of Kummer surfaces

Fix a number field k, as well as non-CM elliptic curves E, E' with a cyclic isogeny of minimal degree d between them.

Let $X = \text{Kum}(E \times E') = \overline{E \times E'}/\iota$, where $\iota: x \mapsto -x$.

$\Lambda_d = \text{NS}(X)$ has rank 19, discriminant 2^d, independent of E, E' and isogeny.

Theorem (V.-A. Viray 2017)

Fix a positive integer r, and a prime ℓ.

There is a positive integer $B = B(r, d, \ell)$ such that for all K3 surfaces X/k with $[k: \mathbb{Q}] = r$ and $\text{NS}(X) \simeq \Lambda_d$, $\#(\text{Br}(X)/\text{Br}_1(X)) \ll B$.

III. Special cases: 1-parameter families of Kummer surfaces

Fix a number field k, as well as non-CM elliptic curves E, E' with a cyclic isogeny of minimal degree d between them.

Let $X = \text{Kum}(E \times E') = (\overline{E \times E'})/\iota$, where $\iota : x \mapsto -x$.

Let $\Lambda_d = \text{NS}(\overline{X})$.

Λ_d has rank 19, discriminant $2d$, + indep. of E, E' and isogeny.
III. Special cases: 1-parameter families of Kummer surfaces

Fix a number field k, as well as non-CM elliptic curves E, E' with a cyclic isogeny of minimal degree d between them.

Let $X = \text{Kum}(E \times E') = \overline{(E \times E')}/\iota$, where $\iota: x \mapsto -x$.

Let $\Lambda_d = \text{NS}(\overline{X})$.

Λ_d has rank 19, discriminant $2d$, + indep. of E, E' and isogeny.

Theorem (V.-A. Viray 2017)

Fix a positive integer r, and a prime ℓ.

There is a positive integer $B = B(r, d, \ell)$ such that for all K3 surfaces X/k with $[k : \mathbb{Q}] = r$ and $\text{NS}(\overline{X}) \simeq \Lambda_d$,

$$\#(\text{Br}(X)/\text{Br}_1(X))[\ell^{\infty}] < B.$$
Key idea:

Given X/k with $\text{NS}(\overline{X}) \cong \Lambda_d$, an element of order n in $\text{Br}(X)/\text{Br}_1(X)$ can be used to construct a finite extension L/k (degree independent of X) such that $\text{Gal}(L(E'_{n/c})/L)$ is an abelian group. Here $X_L \cong \text{Kum}(E \times E')$.
III. Special cases: 1-parameter families of Kummer surfaces

Proposition (V.-A.–Viray 2017)

Let L be a number field, ℓ a prime number. There is a constant $B := B(L, \ell)$ such that for all non-CM elliptic curves E/L, the extension $L(E_{\ell^s})/L$ is not abelian for $s > B$.
Proposition (V.-A.–Viray 2017)

Let L be a number field, ℓ a prime number. There is a constant $B := B(L, \ell)$ such that for all non-CM elliptic curves E/L, the extension $L(E_{\ell^s})/L$ is not abelian for $s > B$.

Question

Can we prove Serre-uniformity type results for non-abelianess of the mod ℓ Galois representation of elliptic curves over some concrete number fields?
III. Special cases: 1-parameter families

Theorem (Cadoret–Charles, 2018)

Fix $d \in \mathbb{Z}_{>0}$, a prime number ℓ, a number field k. Let $X \to S$ be a K3 scheme over a k-curve S. There is a constant $C = C(d)$ such that for every $s \in S(K)$ with $[K : k] < d$,

$$\# \text{Br}(\overline{X}_s)^\text{Gal}(\overline{k}/K) < C.$$
III. Special cases: 1-parameter families

Theorem (Cadoret–Charles, 2018)

Fix $d \in \mathbb{Z}_{>0}$, a prime number ℓ, a number field k.
Let $X \to S$ be a K3 scheme over a k-curve S.
There is a constant $C = C(d)$ such that for every $s \in S(K)$ with $[K : k] < d$,

$$\#\text{Br}(X_s)^{\text{Gal}(\bar{k}/K)} < C.$$

Question

Can we prove a result along the lines of V.-A.–Viray or Cadoret–Charles for 2-parameter families?
E.g., For K3 surfaces X/k such that $\bar{X} \simeq \text{Kum}(E_1 \times E_2)$ for non-isogenous, non-CM elliptic curves E_1, E_2?
III. Special cases: CM K3 surfaces

A K3 surface X/\mathbb{C} has CM if

$$E(X) := \text{End}_{\text{Hdg}}(T(X)_\mathbb{Q})$$

is a CM field and $\dim_{E(X)} T(X)_\mathbb{Q} = 1$.

Examples:

- K3's with $\rho(X) = 20$; $E(X)$ is an imaginary quadratic field.
- Kummer surfaces $X = \text{Kum}(A)$ where A has CM.

Theorem (Orr–Skorobogatov, 2018)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer $C = C(d)$ such that:

For all number fields k with $[k:\mathbb{Q}] = d$ and all CM K3 surfaces X/k, $\#\text{Br}(X) \text{Gal}(\mathbb{Q}/k) < C$.
A K3 surface X/\mathbb{C} has CM if

$$E(X) := \text{End}_{\text{Hdg}}(T(X)_\mathbb{Q})$$

is a CM field and

$$\dim_{E(X)} T(X)_\mathbb{Q} = 1.$$

Examples:

- K3’s with $\rho(X) = 20$; $E(X)$ is an imaginary quadratic field.
- Kummer surfaces $X = \text{Kum}(A)$ where A has CM.
III. Special cases: CM K3 surfaces

A K3 surface X/\mathbb{C} has CM if

$$E(X) := \text{End}_{\text{Hdg}}(T(X)_{\mathbb{Q}})$$

is a CM field and $\dim_{E(X)} T(X)_{\mathbb{Q}} = 1$.

Examples:

- K3’s with $\rho(X) = 20$; $E(X)$ is an imaginary quadratic field.
- Kummer surfaces $X = \text{Kum}(A)$ where A has CM.

Theorem (Orr–Skorobogatov, 2018)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer $C = C(d)$ such that:

For all number fields k with $[k : \mathbb{Q}] = d$ and all CM K3 surfaces X/k,

$$\# \text{Br}(\overline{X})^{\text{Gal}(\overline{\mathbb{Q}}/k)} < C.$$
III. Special cases: CM K3 surfaces

Valloni has developed an explicit theory of CM for K3 surfaces.

Theorem (Valloni, 2018)

Let $X/\mathbb{Q}(i)$ be a K3 surface with CM by $\mathbb{Q}(i)$. Then $\text{Br}(\overline{X})^{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(i))}$ is isomorphic to one of:

\[
0, \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/5\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.
\]
Questions

Question: Are all the above groups realizable for some $X/Q(i)$?

What is the co-kernel of the map $Br(X) \rightarrow Br(X)_{\text{Gal}(Q/Q(i))}$?

Question: Given a K3 surface $X/Q(i)$ with CM by $Q(i)$, can we devise a practical procedure to determine if $X(A)$ is empty? E.g., diagonal quartic surfaces.

Question: Given a quartic surface X/k over a number field, can we determine algorithmically if X has CM?

Question: What are the possibilities for $Br(X)_{\text{Gal}(Q/k)}$ when X/k is a CM Kummer surface?

Database of CM K3 surfaces and their Brauer groups?
Questions

Question: Are all the above groups realizable for some $X/\mathbb{Q}(i)$?

What is the co-kernel of the map $\text{Br}(X) \to \text{Br}(\overline{X})^\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(i))$?
Questions

Question: Are all the above groups realizable for some $X/\mathbb{Q}(i)$?

What is the co-kernel of the map $\text{Br}(X) \to \text{Br}(\overline{X})^{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(i))}$?

Question: Given a K3 surface $X/\mathbb{Q}(i)$ with CM by $\mathbb{Q}(i)$, can we devise a practical procedure to determine if $X(\mathbb{A})^{\text{Br}}$ is empty? E.g., diagonal quartic surfaces.
Questions

Question: Are all the above groups realizable for some $X/\mathbb{Q}(i)$?

What is the co-kernel of the map $\text{Br}(X) \to \text{Br}(\overline{X})^{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(i))}$?

Question: Given a K3 surface $X/\mathbb{Q}(i)$ with CM by $\mathbb{Q}(i)$, can we devise a practical procedure to determine if $X(\mathbb{A})^\text{Br}$ is empty? E.g., diagonal quartic surfaces.

Question: Given a quartic surface X/k over a number field, can we determine algorithmically if X has CM?
Questions

Question: Are all the above groups realizable for some $X/\mathbb{Q}(i)$?

What is the co-kernel of the map $\text{Br}(X) \to \text{Br}(\overline{X})^{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(i))}$?

Question: Given a K3 surface $X/\mathbb{Q}(i)$ with CM by $\mathbb{Q}(i)$, can we devise a practical procedure to determine if $X(\mathbb{A})^{\text{Br}}$ is empty? E.g., diagonal quartic surfaces.

Question: Given a quartic surface X/k over a number field, can we determine algorithmically if X has CM?

Question: What are the possibilities for $\text{Br}(\overline{X})^{\text{Gal}(\overline{\mathbb{Q}}/k)}$ when X/k is a CM Kummer surface?
Questions

Question: Are all the above groups realizable for some $X/\mathbb{Q}(i)$?

What is the co-kernel of the map $\text{Br}(X) \to \text{Br}(X)^{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(i))}$?

Question: Given a K3 surface $X/\mathbb{Q}(i)$ with CM by $\mathbb{Q}(i)$, can we devise a practical procedure to determine if $X(\mathbb{A})^{\text{Br}}$ is empty? E.g., diagonal quartic surfaces.

Question: Given a quartic surface X/k over a number field, can we determine algorithmically if X has CM?

Question: What are the possibilities for $\text{Br}(X)^{\text{Gal}(\overline{\mathbb{Q}}/k)}$ when X/k is a CM Kummer surface?

Database of CM K3 surfaces and their Brauer groups?