LATE TIME BEHAVIOR OF TWO POINT FUNCTIONS IN THE D1D5 CFT

Gábor Sárosi
Work in progress with V. Balasubramanian, B. Czech and B. Craps
December 8, 2016
Late time behavior of two point functions in BH background

- Model: spectral form factor (phase differences are important)
 \[F_\beta(t) = \sum_{m,n} e^{-\beta(E_m+E_n)} e^{-i(E_m-E_n)t}, \]

- In SYK: early time behavior is governed by GR, late time by RMT [Cotler+many authors, ’16]

- Can we check the validity of the late time prediction in a top-down model?

A zeroth order step: D1D5 system at orbifold point
Time average vs ensemble average in RMT

\[F_\beta(t) = \sum_{m,n=1}^{2^{10}} e^{-\beta(E_m+E_n)} e^{-i(E_m-E_n)t}, \]

\[\Delta t = 10 \]
Time average vs ensemble average in RMT

\[F_\beta(t) = \sum_{m,n=1}^{2^{10}} e^{-\beta(E_m+E_n)} e^{-i(E_m-E_n)t}, \]

\[F_{\beta=1} \]

\[\Delta t = 60 \]
Time average vs ensemble average in RMT

\[F_\beta(t) = \sum_{m,n=1}^{2^{10}} e^{-\beta(E_m+E_n)} e^{-i(E_m-E_n)t}, \]

\[\Delta t = 110 \]
Time average vs ensemble average in RMT

\[
F_\beta(t) = \sum_{m,n=1}^{2^{10}} e^{-\beta(E_m+E_n)} e^{-i(E_m-E_n)t},
\]

\[
\Delta t = 160
\]
Time average vs ensemble average in RMT

Progressive average:

\[\Delta t = at \]

- No a priori knowledge of time scale is required
- Even spacing on log-log plots...
Time average vs ensemble average in RMT

Progressive average:

\[\Delta t = at \]

- No a priori knowledge of time scale is required
- Even spacing on log-log plots...
Time average vs ensemble average in RMT

Progressive average:

$$\Delta t = at$$

- No a priori knowledge of time scale is required
- Even spacing on log-log plots...
Time average vs ensemble average in RMT

Progressive average:

\[\Delta t = at \]

- No a priori knowledge of time scale is required
- Even spacing on log-log plots...
Time average vs ensemble average in RMT

Progressive average:
\[\Delta t = at \]

Dependence on \(a \)?
Two charge black holes in D1D5

D1D5 system: \(CFT_N = \frac{(T^4)^N}{S_N} \), \(N = N_1N_5 \)

- IR description of 5d black holes
- Dual to IIB on \(AdS_3 \times S^3 \times T^4 \)

Ramond ground states

\[
|N_{n\mu}, N'_{n\mu}\rangle = \prod_{n,\mu} (\sigma_n^\mu)^{N_{n\mu}} (\tau_n^\mu)^{N'_{n\mu}} |0\rangle
\]

\[
\sum_{n,\mu} n(N_{n\mu} + N'_{n\mu}) = N, \quad N_{n\mu} = 0, 1, 2, \cdots, \quad N'_{n\mu} = 0, 1
\]

- Parametrically large, but not classically visible degeneracy \(S \sim \sqrt{N} \)
- Typical state from grand canonical distribution \(e^{-\eta N} \)

\[
N_{n\mu} = \frac{1}{e^{\eta n} - 1}, \quad N'_{n\mu} = \frac{1}{e^{\eta n} + 1}, \quad N_n = \sum_{\mu} (N_{n\mu} + N'_{n\mu}) = \frac{8}{\sinh \eta n}
\]

\[
N = \sum_n nN_n \approx \frac{2\pi^2}{\eta^2}
\]
Two point function in D1D5

Two point function [Balasubramanian,...’05]

\[\mathcal{O} = \frac{1}{\sqrt{N}} \sum_{a=1}^{N} \mathcal{O}_a, \quad h_a = \bar{h}_a = 1. \]

\[G(w, \bar{w}) = \langle N_{n\mu}, N'_{n\mu} | \mathcal{O}^\dagger \mathcal{O} | N_{n\mu}, N'_{n\mu} \rangle \]

\[= \frac{1}{N} \sum_{n=1}^{N} nN_n \sum_{k=0}^{n-1} \frac{1}{\left[2n \sin \left(\frac{w-2\pi k}{2n} \right) \right]^2 \left[2n \sin \left(\frac{\bar{w}-2\pi k}{2n} \right) \right]^2}. \]

Remove light crossing singularities: divide by vacuum 2pt function

\[\hat{G}(w, \bar{w}) = \frac{1}{N} \sum_{n=1}^{N} nN_n \sum_{k=0}^{n-1} \left(\frac{4 \sin \frac{w}{2} \sin \frac{\bar{w}}{2}}{2n \sin \left(\frac{w-2\pi k}{2n} \right) 2n \sin \left(\frac{\bar{w}-2\pi k}{2n} \right)} \right)^2. \]
Two point function in D1D5
Two point function in D1D5
Two point function in D1D5

\eta = 0.05 + 0.025j, \quad j = 0, \ldots, 10
Two point function in D1D5

Analytic understanding for the late ramp:

\[R(t) = \frac{1}{N} \sum_{n=1}^{t/\gamma} \frac{8}{\sinh(\eta n)} + \frac{1}{N} \sum_{n=1}^{t/(2\gamma)} \frac{1}{2} \frac{8}{\sinh(2\eta n)} \]

\[\approx \frac{5\sqrt{2}}{\pi \sqrt{N}} \log \left[\frac{\sqrt{N}}{\sqrt{2\pi \delta}} \tanh \left(\frac{t\pi}{\sqrt{2N\gamma}} \right) \right] + \frac{8\eta}{\sqrt{2N\pi}} \log 2 \]
Two point function in D1D5

Scales involved naturally differ from RMT

\[t_p \sim \sqrt{N} \]

\[H_{\text{plateau}} \sim \frac{\log \sqrt{N}}{\sqrt{N}} \]

Ramp is not linear but still seems to be parametrically long (persist for \(N \to \infty \))

Intuition from progressive time average:

- \(t_d \): inverse of the largest level spacing
- \(t_p \): inverse of the smallest level spacing

At finite coupling we then anticipate

- \(t_d \): no change
- \(t_p \): grows to \(e^S \)
Questions?