Nonlinear Gravity From Entanglement

Mark Van Raamsdonk, UBC

Simons It From Qubit Collaboration Annual Meeting

w. Tom Faulkner, Felix Haehl, Eliot Hijano, Onkar Parrikar, Charles Kabides, Rob Myers
Setup: states $|\Psi(\lambda)\rangle$ of CFT $|\Psi(0)\rangle = |\text{vac}\rangle$

Assume: entanglement entropy S_B for ball-shaped regions computed from geometries $M(\lambda)$ via the H.R.T. formula

$S_B = \frac{\text{Area}(B)}{4G_N} + ...$
$\lambda = 0 \quad |\psi\rangle = |\text{vac}\rangle$

For any CFT:

$$M = \text{AdS}_{d+1}$$

corresponds entanglement entropy for ball.

* holographic CFT: HRT in AdS will also give right answer for other regions.*
\[\mathcal{O} (a) : \]

Have \[SS_B = S \left< -\log \rho_B \right> \]

CFT: \[\rho_B = e^{-H_{\xi \mathcal{B}}} \]

\[SS_B = \int_B f(x) \cdot S \left< T_{\mu \nu}(x) \right> \equiv SE_{\xi \mathcal{B}} \]

Entanglement First Law

\[\text{first law of thermodynamics} \]

Blanco, Casini,Hung, Myers

density matrix for ball-shaped region in vacuum state.

energy density

first law of thermodynamics
$O(\lambda)$:

$SS_B = \int_B f(x) \langle T_{00}(x) \rangle$

Entanglement First Law

$\frac{1}{z^d-2} S g_{1}^{1/2} \mu(x, z=0) \propto \langle T_{\mu\nu}(x) \rangle_{\text{CFT}}$

Holographic Dictionary for stress tensor

$S g_{1}$ satisfies Einstein's Equations, linearized about AdS. w. Lashkari McDermott
Use magic Hollands/Wald identity = Stokes Thm.

\[\frac{d}{d\lambda} (\text{Area}_{\bar{B}} - E_{\xi_{\bar{B}}}) = \int_{\Sigma} \omega (g, \frac{d}{d\lambda} g, \xi g) \]

\[+ \int_{\Sigma} \text{Einstein} (g, \frac{d}{d\lambda} g) \]

\[\downarrow \mathcal{O}(\lambda) \]

\[\frac{d}{d\lambda} (S_{\bar{B}} - E_B) = \int \xi^a E_{(i)}^{ab} \xi^b \]

\[\text{vanishes by first law+HRT} \]

\[\text{Einstein tensor} \]

\[\xi_{\bar{B}}: \text{boundary conformal Killing vector} \]

\[\xi: \text{bulk vector vanishing at} \ \bar{B} \]

w. Faulkner, Guica, Hartman, Myers
Can we say anything at the non-linear level?
Have inequalities: for any \(|\Psi\rangle \)

\[
\Delta S_B \leq \Delta \int_B f(x) \langle T_{oo}(x) \rangle
\]

CFT Interpretation: RELATIVE ENTROPY is positive

\[S(\rho_\Sigma || \rho_B) \geq 0 \]

Gravity Interpretation: \(H_\Sigma \geq 0 \)

Positive energy theorem for subsystems

w. Lashkari, Lin, Ooguri, Stoica
Can we actually get nonlinear Einstein's equations?

Idea:

First order E.E. from

\[S^\lambda_B = \int f(x) \langle T_{\lambda\nu} \rangle \]

+ H.R.T. + Wald/Hollands

Maybe nonlinear corrections to E.E. come from corrections to this entanglement formula.
What do these corrections look like?

Start by working backwards:

Assuming Einstein's eqns:

\[\langle O_\alpha \rangle_{\text{CFT}} \rightarrow \text{asymptotic bulk fields} \]

\[T_{\mu \nu}, \theta_0, S, \text{etc...} \]

bulk fields in interior

\[\downarrow \text{perturbative E.E.} \]

area of extremal surface

\[\downarrow \text{Wald technology} \]

entanglement entropy

\[\downarrow \text{H.R.T.} \]

\[S = S_0 + \lambda \int_B f(x) \langle T_{00} \rangle + \lambda^2 \int \int K_{\alpha}(x, y) \langle O_\alpha(x) \times O_\alpha(y) \rangle + ... \]

W. Beach, Lee, Rabideau
Now try to reverse steps.

Can we derive this:

$$S = S_0 + \lambda \int_{\mathcal{B}} f(x) \langle T_{00} \rangle + \lambda^2 \int \int K_\alpha (x, y) \langle \Theta_\alpha (x) \Theta_\alpha (y) \rangle + \ldots$$

from CFT?

1st order: UNIVERSAL

2nd order: likely need to make assumptions about STATE and THEORY

Einstein's eqns relevant to "holographic states" in holographic theories
Choice of state:

\[\langle \phi_0 | \text{vac} \rangle = \int [d\phi] \ e^{-S_{\text{Eucl}}} \phi(0) = \phi_0 \]

\[\langle \phi_0 | \Sigma_\lambda \rangle = \int [d\phi] e^{-S_{\text{Eucl}} - \int_{t < 0} \lambda_\alpha(x)(2t)\Theta_\alpha(x)} \]

\(\lambda_\alpha \rightarrow \) Euclidean bulk solution

Initial data for Lorentzian solution

Lorentzian solution to one-pt fns.

Gives coherent state of bulk fields.

w. Marolf, Parrikhari Rabiden
Starting from

\[|\Phi_\lambda\rangle = \int [d\phi] e^{-S_{\text{Eff}} - \int \lambda_\alpha \phi_\alpha} \]

Compute \(S_B \) to 2nd order in \(\lambda_\alpha \)

c.f. Faulkner, Sperenza, Parrikar, Leigh, Wang

Result depends on:

\[\langle \phi_\alpha \phi_\beta \rangle, \langle \phi_\alpha \phi_\beta T_{\mu\nu} \rangle, \langle T_{\mu\nu} T_{\alpha\beta} \rangle \rightarrow \text{universal (up to normalization)} \]

\[\langle T_{\mu\nu} T_{\alpha\beta} T_{\rho\sigma} \rangle \rightarrow 3 \text{ different tensor structures} \]
Preliminary results:

Hollands Wald:

\[\frac{d^2}{d\lambda^2} (\text{Area}_B - E_{\xi_B}) = \int \omega (g, \delta g, \xi, \delta g^{(\ast)}) \]
\[- \frac{1}{8\pi} \int \xi^a E_a^{(2)} \xi^b \]

CFT calculations:

\[\frac{d}{d\lambda^2} (S_B - \langle H_{\xi_B} \rangle) = \int \omega (g, \delta g, \langle \xi \rangle, \delta g^{(\ast)}) \]
\[- \int \xi^a \xi^b T^{(2)}_{ab} (\langle \Theta \rangle_{\text{matter}}, \langle \Theta \rangle_{\text{matter}}) \]

Combine:

\[E^{(2)}_{ab} = 8\pi \cdot T^{(2)}_{ab} \]

For correct \(\langle TTTT \rangle \) and "holographic" states
Summary

- CFT with appropriate $\langle T T T \rangle$
- $|\Psi(\lambda)\rangle_{\text{CFT}}$ from light operator sources in Euclidean P.I.
- Assume $S_{\text{Ball}}(|\Psi(\lambda)\rangle)$ computed from M_λ via HRT

\[M(\lambda) \text{ must satisfy Einstein's eqns to 2nd order in } \lambda \text{ w. boundary conditions given by CFT one point fps } \langle \Theta \rangle, \langle T \rangle \]