Integral Tate conjecture for cubic fourfolds

Alena Pirutka

March 26, 2015

Let \(F \) be a finite field of characteristic \(p \) and \(\ell \) a prime distinct from \(p \). Let \(\overline{F} \) be an algebraic closure with \(G = \text{Gal}(\overline{F}/F) \).

For \(X \) smooth and projective over \(F \), let

\[c_i^\ell : \text{CH}^i(X) \otimes \mathbb{Z}_\ell \to H^{2i}_{\text{et}}(X, \mathbb{Z}_\ell(i)) \]

be the cycle class map. Passing to algebraic closures we get maps:

\[\overline{c}_i^\ell : \text{CH}^i(\overline{X}) \otimes \mathbb{Z}_\ell \to \bigcup_{H \subset G \text{ open}} H^{2i}_{\text{et}}(\overline{X}, \mathbb{Z}_\ell(i))^H. \]

Remark 1 If \(X/\mathbb{C} \) smooth projective then we get maps

\[c_i^i : \text{CH}^i(X) \to \text{Hdg}^{2i}(X, \mathbb{Z}). \]

Facts:

1. \(i = 1 \): The Kummer sequence gives

 \[\text{coker}(c_1^\ell) \hookrightarrow T_\ell\text{Br}(X), \]

 where the right-hand-side has no torsion. Then the Tate conjecture implies the integral version.

2. If \(i = \dim(X) \) then the Lang-Weil estimates give a zero-cycle of degree 1.

3. If \(i = \dim(X) - 1 \) then Schoen shows \(\overline{c}_i^{\dim(X)-1} \) is surjective provided the Tate conjecture holds for divisors on surfaces.
We turn to $i = 2$: Here we have
\[\text{coker}(c^2_\ell) = H^3_{nr}(X, \mathbb{Q}_\ell/\mathbb{Z}_\ell(2))/\text{max. div. subgroup} \]
here
\[H^3_{nr}(X, \mathbb{Q}_\ell/\mathbb{Z}_\ell(2)) = \lim_{\rightarrow} H^3_{nr}(X, \mu^{\otimes 2} \ell). \]
which is conjecturally finite.

Theorem 1 (Parimala-Suresh) Let S be a smooth projective surface over \mathbb{F} and $X \to S$ a conic bundle. Then $H^3_{nr}(X, \mathbb{Q}_\ell/\mathbb{Z}_\ell(2)) = 0$ for all ℓ.

Theorem 2 (Charles, P-) Let $X \subset \mathbb{P}^5_\mathbb{F}$ be a smooth cubic with $p \geq 5$. Then c^2_ℓ is surjective.

It remains open whether $H^3_{nr}(X)$ is nonzero.

1. Voisin established the integral Hodge conjecture in this case, over \mathbb{C}, via normal functions of Zucker.

2. method for Theorem 2: algebraic normal functions

3. (F. Charles): the Tate conjecture holds for X.

Idea: Given X/\mathbb{F} we consider the variety of lines F. Lift to characteristic zero, to get \mathcal{X} and \mathcal{F}, where the latter is holomorphic symplectic of type $K3[2]$. Under some conditions, F, being a reduction of \mathcal{F}, satisfies the Tate conjecture. Using Beauville-Donagi results on the incidence correspondence, we deduce the conjecture for X.

Proof: (1) Take $\overline{X} \subset \mathbb{P}^5_\mathbb{F}$ and $\alpha \in H^4_{et}(\overline{X}, \mathbb{Z}_\ell(2))^H$. Take a Lefschetz pencil
\[\overline{X} \leftarrow \text{Bl}_Y \overline{X} \supset Y \]
\[\downarrow \quad \downarrow \]
\[\mathbb{P}^1 \supset U \]
where U is the smooth locus of the pencil and S is a cubic surface.

Lemma 1

i. If $\alpha | Y = 0$ then $\alpha = 0$.

2
ii. One can assume up to replacing α by $\alpha + b[L \times \mathbb{P}^1]$ that $\alpha|Y_t = 0$ for all $t \in U$.

Consider the incidence correspondence

\[\{(L, x), x \in L\} \]
\[\uparrow \]
\[V \]
\[p \]
\[F \]
\[\psi \]
\[\downarrow \]
\[U \]
\[\pi \]
\[\downarrow \]
\[Y \]
\[q \]

where F_t is the Fano variety of lines of Y_t. The Leray spectral sequence gives

\[H^1(U, \mathbb{R}^3\pi_*Z\ell(2)) \to H^4(Y, Z\ell(2)) \to H^0(U, \mathbb{R}^4\pi_*Z\ell(2)). \]

As $\alpha|Y_t = 0$ for all $t \in U$, the element α comes from $\beta \in H^1(U, \mathbb{R}^3\pi_*Z\ell(2))$, where this first term maps to

\[H^1(U, \mathbb{R}^1\psi_*Z\ell(1)). \]

Let γ be the image of β. Set $\mathcal{J} = \text{Pic}^0 F/U$. Then the Kummer sequence gives

\[\mathcal{J}(U) \otimes \mathbb{Z}_\ell \xrightarrow{\eta} H^1(U, \mathbb{R}^1\psi_*Z\ell(1)) \to T\ell H^1(U, \mathcal{J}) \]

where the last term has no torsion. If $\alpha = c^2z$ for $z \in \text{CH}^2(X) \otimes \mathbb{Z}_\ell$ then $z' = p_*q^*z \in \mathcal{J}(U) \otimes \mathbb{Z}_\ell$.

Fact: If α is algebraic, $\eta(z')$ coincides with the image of α along the map

\[H^1(U, \mathbb{R}^3\pi_*Z\ell) \to H^1(U, \mathbb{R}^1\phi_*Z\ell(1)). \]

Next, for α a cohomology class as before, the ordinary Tate conjecture implies there exists $N > 0$ such that $N\alpha$ is algebraic. Thus $N\gamma \in \text{Im}(\eta)$ and $\gamma \in \text{Im}(\eta)$.

Definition 1 An element $z' \in \mathcal{J}(U) \otimes \mathbb{Z}_\ell$ such that $\eta(z') = \gamma$ is a normal function associated with α.

3
(2) (Markushevich-Tikhomirov-Druel) Consider the moduli space \(\mathcal{M} \to U \) of semistable torsion-free rank-two sheaves on \(Y \) with \(c_2 = 0, c_1 = 2[L] \), defined in this generality by Langer. Thus we have

\[
\begin{array}{c}
\mathcal{M} \\
\downarrow \\
\mathcal{J} \\
\downarrow \\
U
\end{array}
\]

such that for any \(t \in U \), \(\mathcal{M}_t \to \mathcal{J}_t \) induces a birational map from at least one component of \(\mathcal{M}_t \) to \(\mathcal{J}_t \). By (1) we get \(z' \in \mathcal{J}(U) \otimes \mathbb{Z}_\ell \). It is enough to assume \(z' \in \mathcal{J}(U) \), i.e., a section of \(\mathcal{J} \to U \).

Let \(K = \overline{\mathbb{F}}(U) \) and regard \(z'_K \in \mathcal{J}(K) \) which yields \(y \in \mathcal{M}(K) \). Realize \(\mathcal{M}_K = \text{Quot}/\text{GL} \) and let \(C \subset \text{Quot} \) denote the unique closed orbit above \(y \), i.e., a projective homogeneous space for the action of \(\text{GL} \). Using a result of Springer gives the rational point, i.e., \(C(K) \neq \emptyset \), whence a rank two sheaf \(\mathcal{F} \) on \(Y \), because the cohomological dimension of \(\overline{\mathbb{F}}(t) \) is 1. The class

\[
c_2(\mathcal{F}) - 2[L \times \mathbb{P}^1]
\]

is the desired cycle of class \(\alpha|Y \).

Counterexamples

1) Atiyah-Hirzebruch, Totaro, P-, Yagita: There exists \(\alpha \in \bigcup_H H^4(\overline{X}, \mathbb{Z}_\ell(2))^H \) such that \(\alpha \) is not algebraic but \(\ell \alpha = 0 \). Even modulo torsion it is possible to get examples. The method involves analyzing cycles on classifying spaces via approximations by quotients of linear spaces by algebraic groups.

2) Over \(\mathbb{C} \): Kollár: \(X_d \subset \mathbb{P}^4_d \) hypersurface with \(d \) sufficiently divisible (by \(\ell \)). Then any curve class is proportional to \(\ell \), thus the class of 1 is not represented by algebraic cycles. This should not be possible over \(\mathbb{F} \) by Schoen’s Theorem, however.

3) The map

\[
\text{CH}^2(X) \otimes \mathbb{Z}_\ell \to \text{CH}^2(\overline{X})^G \otimes \mathbb{Z}_\ell
\]

need not be surjective.