Igusa integrals and volume asymptotics in analytic and adelic geometry

joint work with A. Chambert-Loir
Counting lattice points

Basic observation

\[\text{# of lattice points} \sim \text{volume} + \text{error term} \]

Basic problems

- compute the volume
- prove that the error term is smaller than the main term

Introduction
Counting lattice points

Basic observation

\# of lattice points \sim \text{volume} + \text{error term}
Counting lattice points

Basic observation

of lattice points \sim volume + error term

Basic problems

- compute the volume
Counting lattice points

Basic observation

of lattice points \sim volume + error term

Basic problems

- compute the volume
- prove that the error term is smaller than the main term
Rational points on \mathbb{P}^1

$$\mathbb{P}^1(\mathbb{Q}) = \{ \mathbf{x} = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0)/\pm \mid \gcd(x_0, x_1) = 1 \}$$
Rational points on \mathbb{P}^1

\[\mathbb{P}^1(\mathbb{Q}) = \{ x = (x_0, x_1) \in (\mathbb{Z}^2 \setminus \{0\})/\pm \mid \gcd(x_0, x_1) = 1 \} \]

Height function

\[H: \mathbb{P}^1(\mathbb{Q}) \rightarrow \mathbb{R}_{>0} \]

\[x \mapsto \sqrt{x_0^2 + x_1^2} \]
Rational points on \mathbb{P}^1

$$\mathbb{P}^1(\mathbb{Q}) = \{ x = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0)/\pm \mid \gcd(x_0, x_1) = 1 \}$$

Height function

$$H: \mathbb{P}^1(\mathbb{Q}) \to \mathbb{R}_{>0}$$

$$x \mapsto \sqrt{x_0^2 + x_1^2}$$

Counting function

$$N(B) := \# \{ x \mid H(x) \leq B \} \sim$$
Rational points on \mathbb{P}^1

$\mathbb{P}^1(\mathbb{Q}) = \{x = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0)/\pm \mid \gcd(x_0, x_1) = 1\}$

Height function

$H: \mathbb{P}^1(\mathbb{Q}) \to \mathbb{R}_{>0}$

$x \mapsto \sqrt{x_0^2 + x_1^2}$

Counting function

$N(B) := \#\{x \mid H(x) \leq B\} \sim \pi \cdot B^2, \quad B \to \infty$
Rational points on \(\mathbb{P}^1 \)

\[
\mathbb{P}^1(\mathbb{Q}) = \{ x = (x_0, x_1) \in (\mathbb{Z}^2 \setminus 0)/\pm \mid \gcd(x_0, x_1) = 1 \}
\]

Height function

\[
H : \mathbb{P}^1(\mathbb{Q}) \rightarrow \mathbb{R}_{>0} \\
\quad x \mapsto \sqrt{x_0^2 + x_1^2}
\]

Counting function

\[
N(B) := \# \{ x \mid H(x) \leq B \} \sim \frac{1}{2} \cdot \frac{1}{\zeta(2)} \cdot \pi \cdot B^2, \quad B \rightarrow \infty
\]
Leading constant

\[\frac{1}{\zeta(2)} = \prod_p \left(1 + \frac{1}{p} \right) \cdot \left(1 - \frac{1}{p} \right) \]

We will interpret this as a volume with respect to a natural regularized measure on the adelic space \(\mathcal{P}_1(A_{\text{fin}}, Q) \).
Leading constant

\[\frac{1}{\zeta(2)} = \prod_p (1 + \frac{1}{p}) \cdot (1 - \frac{1}{p}) = \prod_p \frac{\# \mathbb{P}^1(F_p)}{p} \cdot (1 - \frac{1}{p}) \]
Leading constant

\[\frac{1}{\zeta(2)} = \prod_p (1 + \frac{1}{p}) \cdot (1 - \frac{1}{p}) = \prod_p \frac{\# \mathbb{P}^1(F_p)}{p} \cdot (1 - \frac{1}{p}) \]

We will interpret this as a volume with respect to a natural regularized measure on the adelic space \(\mathbb{P}^1(A_{\text{fin}}^\text{Q}) \).
Points of height ≤ 1000 on the E_6 singular cubic surface $X \subset \mathbb{P}^3$

$$x_1x_2^2 + x_2x_0^2 + x_3^3 = 0,$$

with $x_0, x_2 > 0$.

Introduction
Let $X^\circ := X \setminus \mathfrak{l}$, the unique line on X given by $x_2 = x_3 = 0$.

Derenthal (2005)

$$N(X^\circ(\mathbb{Q}), B) \sim c \cdot B \log(B)^6, \quad B \to \infty.$$
Leading constant

\[c = \alpha \cdot \beta \cdot \tau \]

where

\begin{itemize}
 \item \(\alpha = \frac{1}{6220800} \)
 \item \(\beta = 1 \)
 \item \(\tau = \prod_p \tau_p \cdot \tau_\infty \) with
 \[\tau_p = \frac{(p^2 + 7p + 1)}{p^2} \cdot (1 - \frac{1}{p})^7 = \frac{\#X(\mathbb{F}_p)}{p^2} \cdot (1 - \frac{1}{p})^7 \]
 \[\tau_\infty = 6 \int_{|tv^3| \leq 1, |t^2 + u^3| \leq 1, 0 \leq v \leq 1, |uv^4| \leq 1} dt du dv \]
\end{itemize}
Points of height ≤ 50 on the Cayley cubic surface $(4A_1) \ X \subset \mathbb{P}^3$

$$x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3 = 0$$
Cubic forms

Points of height ≤ 50 on the Cayley cubic surface $(4A_1) \ X \subset \mathbb{P}^3$

$$x_0x_1x_2 + x_0x_1x_3 + x_0x_2x_3 + x_1x_2x_3 = 0$$

Many recent results on asymptotics of points of bounded height on cubic surfaces and other Del Pezzo surfaces (Batyrev-Tschinkel, Browning, Derenthal, de la Breteche, Fouvry, Heath-Brown, Moroz, Salberger, Swinnerton-Dyer, ...)

Introduction
The framework: Manin’s conjecture

Manin (1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding.
The framework: Manin’s conjecture

Manin (1989)

Let $X \subset \mathbb{P}^n$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^\circ \subset X$ such that

$$N(X^\circ(F), B) \sim c \cdot B \log(B)^{b-1}, \quad B \to \infty,$$

where $b = \text{rk} \text{Pic}(X)$.

Introduction
Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- $\rho : G \to \text{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the “flow” $\rho(G) \cdot x$
- $H : V(F) \to \mathbb{R}_{>0}$ - height
- $\{\gamma \in G(o_F) \mid H(\rho(\gamma) \cdot x) \leq B\}$
Algebraic flows

Data:
- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- $\rho : G \to \text{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the “flow” $\rho(G) \cdot x$
- $H : V(F) \to \mathbb{R}_{>0}$ - height
- $\{ \gamma \in G(o_F) \mid H(\rho(\gamma) \cdot x) \leq B \}$

One can consider a similar setup for projective representations and rational points.
Data:
- \(G \) a linear algebraic group over \(F \)
- \(V \) a finite-dimensional vector space over \(F \)
- \(\rho : G \to \text{End}(V) \) an algebraic representation
- \(\text{fix } x \in V \) and consider the “flow” \(\rho(G) \cdot x \)
- \(H : V(F) \to \mathbb{R}_{>0} - \text{height} \)
- \(\{ \gamma \in G(F) \mid H(\rho(\gamma) \cdot x) \leq B \} \)

One can consider a similar setup for projective representations and rational points.

Arithmetic problem:
Count \(\sigma_F \)-integral (or \(F \)-rational points) on \(G/H \), where \(H \) is the stabilizer of \(x \).
Some results

Rational points: (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset T$; (Strauch-T.) $X \supset G/U$; (Chambert-Loir-T.) $X \supset \mathbb{G}_a^n$; (Shalika-T.) $X \supset U$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset G$, De Concini-Procesi varieties

In all cases, Manin’s conjecture, and its refinements by Batyrev-Manin, Peyre, Batyrev-T. hold.

Integral points on G/H: Duke-Rudnick-Sarnak; Eskin-McMullen; Eskin-Mozes-Shah; Borovoi-Rudnick; Gorodnik, Maucourant, Oh, Shah, Nevo, Weiss

Introduction
Some results

Rational points: (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset T$; (Strauch-T.) $X \supset G/U$; (Chambert-Loir-T.) $X \supset \mathbb{G}_a^n$; (Shalika-T.) $X \supset U$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset G$, De Concini-Procesi varieties

In all cases, Manin’s conjecture, and its refinements by Batyrev-Manin, Peyre, Batyrev-T. hold.

Integral points on G/H: Duke-Rudnick-Sarnak; Eskin-McMullen; Eskin-Mozes-Shah; Borovoi-Rudnick; Gorodnik, Maucourant, Oh, Shah, Nevo, Weiss
Comparison with volume asymptotics

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.
Comparison with volume asymptotics

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.
In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following
In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following

Problem

Compute these volumes.
Consider the set $V_P(\mathbb{Z})$ of integral 2×2-matrices M with characteristic polynomial

$$P(X) := X^2 + 1.$$

Put

$$\|M\| = \| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \| = \sqrt{a^2 + b^2 + c^2 + d^2}.$$

The volume of the “height ball” is given by $c \cdot B$, where

$$c = \zeta^*_\mathbb{Q}(\sqrt{-1})(1) \cdot \frac{\pi^{1/2}}{\Gamma(3/2)} \cdot \frac{\pi}{\Gamma(2/2)\zeta(2)}.$$
Consider the set $V_P(\mathbb{Z})$ of integral 2×2-matrices M with characteristic polynomial

$$P(X) := X^2 + 1.$$

Put

$$\| M \| = \| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \| = \sqrt{a^2 + b^2 + c^2 + d^2}.$$

The volume of the “height ball” is given by $c \cdot B$, where

$$c = \zeta^*(\sqrt{-1}) (1) \cdot \frac{\pi^{1/2}}{\Gamma(3/2)} \cdot \frac{\pi}{\Gamma(2/2) \zeta(2)}.$$

The number of integral matrices in the ball of radius B converges to the volume.
Matrices with fixed characteristic polynomial

For general

\[V_P := \{ M \in \text{Mat}_n \mid \det(X \cdot \text{Id} - M) = P(X) \}, \]

where \(P \) has \(n \) distinct roots, one has

\[\#\{ M \in V_P(\mathbb{Z}) \mid \|M\| \leq B \} \sim c_P \cdot B^m, \quad m = n(n-1)/2, \]

where

\[c_P = \frac{2^{r_1}(2\pi)^{r_2} hR}{w \sqrt{D}} \cdot \frac{\pi^{m/2}/\Gamma(1 + (m/2))}{\prod_{j=2}^{n} \pi^{-j/2}\Gamma(j/2)\zeta(j)}. \]
Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R}, and $\rho: G \to V$ a faithful representation. Let $\| \cdot \|$ be a norm on V. Then

$$\text{vol}(B) = \mu(\{g \in G \mid \|\rho(g)\| \leq B\}) \sim c \cdot B^a \log(B)^{b-1}, \quad B \to \infty,$$

where a, b are defined in terms of the relative root system of G and the weights of ρ, and $1 \leq b \leq \text{rank}_\mathbb{R}(G)$.

Maucourant (2004)
Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R}, and $\rho : G \to V$ a faithful representation. Let $\| \cdot \|$ be a norm on V. Then

$$\text{vol}(B) = \mu(\{ g \in G \mid \|\rho(g)\| \leq B \}) \sim c \cdot B^a \log(B)^{b-1}, \quad B \to \infty,$$

where a, b are defined in terms of the relative root system of G and the weights of ρ, and $1 \leq b \leq \text{rank}_{\mathbb{R}}(G)$. Moreover,

$$\text{vol}(B)^{-1} \cdot \int_{\|\rho(g)\| \leq B} f(\rho(g))d\mu(g) \to \int_{\mathcal{P}\text{End}(V)} f(\rho(g))d\mu_\infty(g),$$

where the limit measure μ_∞ is supported on a G bi-invariant submanifold of $\mathcal{P}\text{End}(V)$.

Maucourant (2004)
Volume asymptotics

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R}, and $\rho: G \to V$ a faithful representation. Let $\| \cdot \|$ be a norm on V. Then

$$\text{vol}(B) = \mu(\{ g \in G \mid \|\rho(g)\| \leq B \}) \sim c \cdot B^a \log(B)^{b-1}, \quad B \to \infty,$$

where a, b are defined in terms of the relative root system of G and the weights of ρ, and $1 \leq b \leq \text{rank}_\mathbb{R}(G)$. Moreover,

$$\text{vol}(B)^{-1} \cdot \int_{\|\rho(g)\| \leq B} f(\rho(g))d\mu(g) \to \int_{\text{PEnd}(V)} f(\rho(g))d\mu_\infty(g),$$

where the limit measure μ_∞ is supported on a G bi-invariant submanifold of $\text{PEnd}(V)$.

The proof uses the Ka^+K-decomposition and integration formula.
The computation of asymptotics of volumes of adelic “height balls” was an open problem, in many cases.
Develop a geometric framework which is
 - applicable in the analytic and adelic setup,
Develop a geometric framework which is
 - applicable in the analytic and adelic setup,
 - applicable to cubic surfaces and algebraic groups,
Goal

Develop a geometric framework which is

- applicable in the analytic and adelic setup,
- applicable to cubic surfaces and algebraic groups,
- applicable in the study of rational and integral points.
Heights

- F/\mathbb{Q} number field
- $X = X_F$ projective algebraic variety over F
- $X(F)$ its F-rational points
- $\mathcal{L} = (L, (\| \cdot \|_v))$ adelicly metrized very ample line bundle
- $H_{\mathcal{L}} : X(F) \to \mathbb{R}_{>0}$ associated height, depends on the metrization (choice of norms)
- $H_{\mathcal{L}}$ is not invariant with respect to field extensions
- $H_{\mathcal{L}+\mathcal{L}'} = H_{\mathcal{L}} \cdot H_{\mathcal{L}'}$ (height formalism)
Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d, in a neighborhood U_x. In U_x, a section of the canonical line bundle has the form $s := dx_1 \wedge \ldots \wedge dx_d$. Put

$$\omega_{K_X,v} := \|s\|_v dx_1 \cdots dx_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d. This local measure globalizes to $X(F_v)$.
Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d, in a neighborhood U_x. In U_x, a section of the canonical line bundle has the form $s := dx_1 \wedge \ldots \wedge dx_d$. Put

$$\omega_{K_X,v} := \|s\|_v dx_1 \cdots dx_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d. This local measure globalizes to $X(F_v)$. For almost all v,

$$\int_{X(F_v)} \omega_{K_X,v} = \frac{X(\mathbb{F}_q)}{q^d}.$$
Choose a finite set of places S, and put

$$\omega_{K_X} := L_S^*(1, \mathrm{Pic}(\bar{X})) \cdot |\text{disc}(F)|^{-1} \cdot \prod_v \lambda_v \omega_{K_X, v},$$

with $\lambda_v = L_v(1, \mathrm{Pic}(\bar{X}))^{-1}$ for $v \notin S$ and $\lambda_v = 1$, otherwise. Put

$$\tau(K_X) := \int_{X(F) \subset X(\mathbb{A}_F)} \omega_{K_X}.$$
Choose a finite set of places S, and put

$$\omega_{\mathcal{K}_X} := L^*_S(1, \text{Pic}(\tilde{X})) \cdot |\text{disc}(F)|^{-1} \cdot \prod_{\nu} \lambda_{\nu} \omega_{\mathcal{K}_X,\nu},$$

with $\lambda_{\nu} = L_{\nu}(1, \text{Pic}(\tilde{X}))^{-1}$ for $\nu \notin S$ and $\lambda_{\nu} = 1$, otherwise. Put

$$\tau(\mathcal{K}_X) := \int_{X(F) \subset X(\mathbb{A}_F)} \omega_{\mathcal{K}_X}.$$

This constant appears in the constant $c = c(-\mathcal{K}_X)$ in Manin’s conjecture above.
Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$.
Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$.

A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.
Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$. A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

A metrization of the canonical line bundle K_X gives a global measure on $X(F)$

$$\tau_X = |\omega|/||\omega||.$$
Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_D the canonical section of $\mathcal{O}_X(D)$, and $U = X \setminus |D|$. A form $\omega \in \Omega^d(U)$ defines a measure $|\omega|$ as before.

A metrization of the canonical line bundle K_X gives a global measure on $X(F)$

$$\tau_X = |\omega|/||\omega||.$$

A metrization of $K_X(D)$ defines a measure on $U(F)$

$$\tau(X,D) = |\omega|/||\omega f_D||.$$
When X is an equivariant compactification of an algebraic group G and ω a left-invariant differential form on G, we have $\text{div}(\omega) = -D$, so that $K_X(D)$ is a trivial line bundle, equipped with a canonical metrization. We may assume that its section ωf_D has norm 1. Then

$$\tau(X,D) = |\omega|/\|\omega f_D\| = |\omega|$$

is a Haar measure on $G(F)$.
Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{ u \in U(F) \mid \| f_L(u) \| \geq 1/B \}$$

is a height ball, i.e., it is compact of finite measure $\text{vol}(B)$.
Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{ u \in U(F) \mid \| f_L(u) \| \geq 1/B \}$$

is a height ball, i.e., it is compact of finite measure $\text{vol}(B)$.

To compute the volume, for $B \to \infty$, we use the Mellin transform

$$Z(s) := \int_0^\infty t^{-s} \text{dvol}(t)$$
Let L be an effective divisor with support $|D| = X \setminus U$, equipped with a metrization. Then

$$\{ u \in U(F) \mid \| f_L(u) \| \geq 1/B \}$$

is a height ball, i.e., it is compact of finite measure $\text{vol}(B)$.

To compute the volume, for $B \to \infty$, we use the Mellin transform

$$Z(s) := \int_0^\infty t^{-s}d\text{vol}(t) = \int_{U(F)} \| f_L \|^s \tau(X,D),$$

combined with a Tauberian theorem.
Assume that over F

$$|D| = \bigcup_{\alpha \in A} D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally.
Assume that over F

$$|D| = \bigcup_{\alpha \in \mathcal{A}} D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset \mathcal{A}$ let

$$D_A := \cap_{\alpha \in A} D_{\alpha}, \quad D_A^\circ = D_A \setminus \bigcup_{A' \supset A} D_{A'}.$$
Assume that over F

$$|D| = \bigcup_{\alpha \in A} D_\alpha,$$

where D_α are geometrically irreducible, smooth, and intersecting transversally. For $A \subset A$ let

$$D_A := \bigcap_{\alpha \in A} D_\alpha, \quad D_A^\circ = D_A \setminus \bigcup_{A' \supset A} D_{A'}.$$

By the transversality assumption, $D_A \subset X$ is smooth, of codimension $\#A$ (or empty).
Assume that over F

$$|D| = \bigcup_{\alpha \in \mathcal{A}} D_{\alpha},$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset \mathcal{A}$ let

$$D_A := \bigcap_{\alpha \in A} D_{\alpha}, \quad D_A^\circ = D_A \setminus \bigcup_{A' \supset A} D_{A'}.$$

By the transversality assumption, $D_A \subset X$ is smooth, of codimension $\#A$ (or empty). Write

$$D = \sum \rho_\alpha D_{\alpha}, \quad L = \sum \lambda_\alpha D_{\alpha}.$$
The Mellin transform $Z(s)$ can be computed in charts, via partition of unity. In a neighborhood of $x \in D_A^\circ(F)$ it takes the form

$$\int \prod_\alpha \|f_{D_\alpha}\|(x)^{\lambda_\alpha s - \rho_\alpha} d\tau x(x) = \int \prod_{\alpha \in A} |x_\alpha|^{\lambda_\alpha s - \rho_\alpha} \phi(x; y; s) \prod_\alpha dx_\alpha dy.$$
The Mellin transform $Z(s)$ can be computed in charts, via partition of unity. In a neighborhood of $x \in D_A^0(F)$ it takes the form

$$\int \prod_{\alpha} \|f_{D_\alpha}\|(x)^{\lambda_\alpha s - \rho_\alpha} d\tau x(x) = \int \prod_{\alpha \in A} |x_\alpha|^{\lambda_\alpha s - \rho_\alpha} \phi(x; y; s) \prod_{\alpha} dx_\alpha dy.$$

Essentially, this is a product of integrals of the form

$$\int_{|x| \leq 1} |x|^{s-1} dx.$$

Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification (D_A).
Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification (D_A).

Abscissa of convergence $= \max_{\rho_\alpha - 1 \neq \emptyset} \frac{\rho_\alpha - 1}{\lambda_\alpha}$.
Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification (D_A).

Abscissa of convergence $= \max_{D_\alpha(F) \neq \emptyset} \frac{\rho_\alpha - 1}{\lambda_\alpha}$, where $\lambda_\alpha > 0$.

Order of pole $= \text{number of } \alpha \text{ that achieve equality};$
Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification (D_A).

Abscissa of convergence = $\max_{D_\alpha(F) \neq \emptyset} \frac{\rho_\alpha - 1}{\lambda_\alpha}$;

Order of pole = number of α that achieve equality;

Leading coefficient = sum of integrals over all D_A of minimal dimension where A consists only of such αs.
Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$.

Global theory
Global theory

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau(X,D),\nu$ on $U(F_\nu)$ for all ν.

Igusa integrals and volume asymptotics
Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),\nu}$ on $U(F_\nu)$ for all ν. Assume that

$$H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0.$$

Let

$$\text{EP}(U) = \Gamma(U_\bar{\mathbb{F}}, \mathcal{O}_X^*)/\bar{\mathbb{F}}^* - \text{Pic}(U_\bar{\mathbb{F}})/\text{torsion}$$

be the virtual Galois module.
Global theory

Let X be a smooth projective variety over a number field F, D an effective divisor on X, $U = X \setminus |D|$. Fix an adelic metric on $K_X(D)$; this defines measures $\tau_{(X,D),\nu}$ on $U(F_\nu)$ for all ν. Assume that

$$H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0.$$

Let

$$\text{EP}(U) = \Gamma(U_{\overline{F}}, \mathcal{O}_X^*)/\overline{F}^* - \text{Pic}(U_{\overline{F}})/\text{torsion}$$

be the virtual Galois module. Put

$$\lambda_\nu = L_\nu(1, \text{EP}(U)), \quad \nu \nmid \infty, \quad \lambda_\nu = 1, \quad \nu \mid \infty.$$

We have a global measure on $U(\mathbb{A}_F)$ given by

$$\tau_{(X,D)} = L^*(1, \text{EP}(U))^{-1} \cdot \prod_\nu \lambda_\nu \tau_{(X,D),\nu}$$

Igusa integrals and volume asymptotics
Height on the adelic space $U(\mathbb{A}_F)$

Let $\mathcal{L} = (L, (\| \cdot \|_v))$ be an adelicly metrized effective divisor supported on $|D|$. This defines a height function on $U(\mathbb{A}_F)$

$$H_{\mathcal{L}}((x_v)) = \prod_v \| f_L(x_v) \|_v^{-1}.$$
Let $\mathcal{L} = (L, (\| \cdot \|_v))$ be an adelicly metrized effective divisor supported on $|D|$. This defines a height function on $U(\mathbb{A}_F)$

$$H_{\mathcal{L}}((x_v)) = \prod_v \| f_L(x_v) \|_v^{-1}.$$

To compute the volume of the height ball

$$\text{vol}(B) := \{ x \in U(\mathbb{A}_F) \mid H_{\mathcal{L}}(x) \leq B \},$$

for \mathcal{L} and $\tau(X,D)$, we use the adelic Mellin transform:

$$Z(s) = \int_0^\infty t^{-s} d\text{vol}(t) = \int_{U(\mathbb{A}_F)} H_{\mathcal{L}}(x)^{-s} d\tau(X,D)(x) = \prod_v \int_{U(F_v)} \cdots.$$
Denef’s formula

Recall that

\[D = \sum \rho_\alpha D_\alpha, \quad L = \sum \lambda_\alpha D_\alpha. \]

Choosing adelic metrics on \(\mathcal{O}_X(D_\alpha) \) one has:

\[Z(v(s)) = \int_X (F_v) \prod_\alpha \| f \|_{D_\alpha}^s \lambda_\alpha - \rho_\alpha v \, \mathrm{d} \tau_X, \]

By the local analysis, this converges absolutely for \(\Re(s) > \max((\rho_\alpha - 1)/\lambda_\alpha) \).

For almost all \(v \) and \(\Re(s) > (\rho_\alpha - 1)/\lambda_\alpha \), one has

\[Z(v(s)) = \sum A(D^\circ A)(F_q) q^{\dim X} \prod_{\alpha \in A} q^{-1} s \lambda_\alpha - \rho_\alpha + 1 - 1. \]
Recall that

\[D = \sum \rho_\alpha D_\alpha, \quad L = \sum \lambda_\alpha D_\alpha. \]

Choosing adelic metrics on \(\mathcal{O}_X(D_\alpha) \) one has:

\[Z_v(s) = \int_{X(F_v)} \prod_\alpha \| f_{D_\alpha} \|_v^{s\lambda_\alpha - \rho_\alpha} d\tau_{X,v}(x). \]
Denef’s formula

Recall that

\[D = \sum \rho_\alpha D_\alpha, \quad L = \sum \lambda_\alpha D_\alpha. \]

Choosing adelic metrics on \(O_X(D_\alpha) \) one has:

\[Z_v(s) = \int_{X(F_v)} \prod_\alpha \| f_{D_\alpha} \|_v^{s \lambda_\alpha - \rho_\alpha} d\tau_{X,v}(x). \]

By the local analysis, this converges absolutely for

\[\Re(s) > \max\left((\rho_\alpha - 1)/\lambda_\alpha \right). \]
Denef’s formula

Recall that

\[D = \sum \rho_\alpha D_\alpha, \quad L = \sum \lambda_\alpha D_\alpha. \]

Choosing adelic metrics on \(\mathcal{O}_X(D_\alpha) \) one has:

\[Z_v(s) = \int_{X(F_v)} \prod_\alpha \| f_{D_\alpha} \|_v^{s \lambda_\alpha - \rho_\alpha} \, d\tau_{X,v}(x). \]

By the local analysis, this converges absolutely for

\[\Re(s) > \max((\rho_\alpha - 1)/\lambda_\alpha). \]

For almost all \(v \) and \(\Re(s) > (\rho_\alpha - 1)/\lambda_\alpha \), one has

\[Z_v(s) = \sum_A \frac{\#D_A^0(\mathbb{F}_q)}{q^{\dim X}} \prod_{\alpha \in A} \frac{q - 1}{q^{s \lambda_\alpha - \rho_\alpha + 1} - 1}. \]
Analyzing the Euler product

Let $a := \max(\rho_\alpha / \lambda_\alpha)$ and let $A(L, D)$ be the set of α where equality is achieved; put $b = \#A(L, D)$.
Let \(a := \max(\rho_\alpha / \lambda_\alpha) \) and let \(A(L, D) \) be the set of \(\alpha \) where equality is achieved; put \(b = \#A(L, D) \). Let \(E \) be the divisor \(aL - D \); it is effective with \(|E| \subseteq |D| \). Then
Analyzing the Euler product

Let $a := \max(\rho_\alpha/\lambda_\alpha)$ and let $A(L, D)$ be the set of α where equality is achieved; put $b = \#A(L, D)$. Let E be the divisor $aL - D$; it is effective with $|E| \subseteq |D|$. Then

$$
\lim_{s \to a} Z(s)(s - a)^b \prod_{\alpha \in A(L, D)} \lambda_\alpha = \int_{X(\mathbb{A}_F)} H_E(x)^{-1} \, d\tau_X(x).
$$
Analyzing the Euler product

Let \(a := \max(\rho_\alpha / \lambda_\alpha) \) and let \(A(L, D) \) be the set of \(\alpha \) where equality is achieved; put \(b = \#A(L, D) \). Let \(E \) be the divisor \(aL - D \); it is effective with \(|E| \subseteq |D| \). Then

\[
\lim_{s \to a} Z(s)(s - a)^b \prod_{\alpha \in A(L, D)} \lambda_\alpha = \int_{X(\mathbb{A}_F)} H_E(x)^{-1} \, d\tau_X(x).
\]

A Tauberian theorem implies the volume asymptotics with respect to \(L \) and \(\tau(X, D) \), for \(B \to \infty \), of the form

\[
B^a \log(B)^{b-1} \left(a(b - 1)! \prod_{\alpha \in A(L, D)} \lambda_\alpha \right)^{-1} \int_{X(\mathbb{A}_F)} H_E(x)^{-1} \, d\tau_X(x).
\]
Integral points

- F number field, \mathcal{O}_F ring of integers
- S finite set of places of F, $S \supset S_\infty$
- X smooth projective variety over F, $D \subset X$ subvariety
- $\mathcal{D} \subset \mathcal{X}$ models over $\text{Spec}(\mathcal{O}_F)$

A rational point $x \in X(F)$ gives rise to a section

$$\sigma_x : \text{Spec}(\mathcal{O}_F) \to \mathcal{X}.$$

A (\mathcal{D}, S)-integral point on X is a rational point $x \in X(F)$ such that $\sigma_{x,v} \notin \mathcal{D}_v$ for all $v \notin S$.

Integral points of bounded height
Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\bigcup_{\alpha \in \mathcal{A}} D_\alpha = X \setminus G$$

the boundary divisor, whose irreducible components D_α are smooth and intersect transversally. Choose a subset $\mathcal{A}_D \subseteq \mathcal{A}$ and put

$$U = X \setminus \bigcup_{\alpha \in \mathcal{A}_D} D_\alpha.$$
Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\bigcup_{\alpha \in A} D_\alpha = X \setminus G$$

the boundary divisor, whose irreducible components D_α are smooth and intersect transversally. Choose a subset $A_D \subseteq A$ and put $U = X \setminus \bigcup_{\alpha \in A_D} D_\alpha$. Then U is a (quasi-projective) equivariant compactification of G, and

$$X \setminus U = D = \sum_{\alpha \in A_D} D_\alpha.$$
Let X be a projective equivariant compatification of $G = \mathbb{G}_a^n$, and

$$\bigcup_{\alpha \in A} D_\alpha = X \setminus G$$

the boundary divisor, whose irreducible components D_α are smooth and intersect transversally. Choose a subset $A_D \subseteq A$ and put $U = X \setminus \bigcup_{\alpha \in A_D} D_\alpha$. Then U is a (quasi-projective) equivariant compactification of G, and

$$X \setminus U = D = \sum_{\alpha \in A_D} D_\alpha.$$

Let \mathcal{L} be an adelically metrized line bundle on X.

Problem

Establish an asymptotic formula for

$$N(B) := \#\{\gamma \in G(F) \cap U(\mathbb{O}_F, S) | H_\mathcal{L}(\gamma) \leq B\}.$$
Techniques

Height pairing

\[G(\mathbb{A}_F) \times \bigoplus_{\alpha} \mathbb{C} D_{\alpha} \rightarrow \mathbb{C} \]
Techniques

Height pairing

\[G(\mathbb{A}_F) \times \bigoplus_{\alpha} \mathbb{C}D_{\alpha} \to \mathbb{C} \]

Height zeta function

\[Z(g, s) = \sum_{\gamma \in G(F) \cap U(\mathcal{O}_F, s)} H(\gamma g, s)^{-1}, \]

is holomorphic for \(\Re(s) \gg 0 \) and all \(g \).
“Fourier” expansion - “Poisson formula”

\[Z(g, s) = \sum_{\psi} \hat{H}(s, \psi), \]

a sum over all (automorphic) characters of \(G(\mathbb{A}_F)/G(F) \).
Techniques

"Fourier" expansion - "Poisson formula"

\[Z(g, s) = \sum_{\psi} \hat{H}(s, \psi), \]

a sum over all (automorphic) characters of \(G(\mathbb{A}_F)/G(F) \).

Main term = trivial character

\[\int_{G(\mathbb{A}_F) \cap U(\mathcal{O}_F, S)} H(g, s)^{-1}, \]
Techniques

“Fourier” expansion - “Poisson formula”

\[Z(g, s) = \sum_{\psi} \hat{H}(s, \psi), \]

a sum over all (automorphic) characters of \(G(\mathbb{A}_F)/G(F) \).

Main term = trivial character

\[\int_{G(\mathbb{A}_F) \cap U(\mathcal{O}_F, S)} H(g, s)^{-1}, \]

a volume integral computed above.

Integral points of bounded height
For $L = -(K_X + D)$ we obtain

\[N(B) \sim c \cdot B \log(B)^{b^{-1}}, \]

\[b := \text{rk}(\text{Pic}(U)) + \sum_{v \in S} (1 + \dim C_{\text{an}}^{\text{max}}(D)), \]

the analytic Clemens complex of the stratification of D, and
Asymptotics

For $L = -(K_X + D)$ we obtain

$$N(B) \sim c \cdot B \log(B)^{b-1},$$

$$b := \text{rk}(\text{Pic}(U)) + \sum_{v \in S} (1 + \dim C^\text{an}_{F_v}(D)),$$

the analytic Clemens complex of the stratification of D, and

$$c = \alpha \beta \tau,$$

- $\alpha \in \mathbb{Q}$, $\beta \in \mathbb{N}$;
- $\tau = \tau^S_{(X,D)}(U(\mathcal{O}_S)) \cdot \prod_{v \in S} \left(\sum_{\sigma \in C^\text{an}_{\max,F_v}(D_v)} \tau_v(\sigma) \right)$
- $\tau_v(\sigma)$ Tamagawa volume of σ, (adjunction!).

Integral points of bounded height
Contributions from nontrivial characters

\[\hat{H}(s, \psi) = \int_{G(\mathbb{A}_F)} H(g, s)^{-1} \psi(g) \, dg. \]
Contributions from nontrivial characters

\[\hat{H}(s, \psi) = \int_{G(\mathbb{A}_F)} H(g, s)^{-1} \psi(g)dg. \]

For \(D = \emptyset \), i.e., rational points on \(X \), the nontrivial characters contribute a pole of smaller order, coming from the Euler product.
Contributions from nontrivial characters

\[\hat{H}(s, \psi) = \int_{G(\mathbb{A}_F)} H(g, s)^{-1} \psi(g) \, dg. \]

For \(D = \emptyset \), i.e., rational points on \(X \), the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified \(\psi \) appear.
Contributions from nontrivial characters

\[\hat{H}(s, \psi) = \int_{G(\mathbb{A}_F)} H(g, s)^{-1} \psi(g) \, dg. \]

For \(D = \emptyset \), i.e., rational points on \(X \), the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified \(\psi \) appear. Uniform bounds needed for summation over the lattice of these \(\psi \) are (relatively) easy to obtain.
Fourier transforms at $\nu \in S$ have poles interacting with the main term.
Complications for integral points

Fourier transforms at $\nu \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term.
Fourier transforms at $\nu \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_\sigma \prod_{\alpha} |x_\alpha|^{s_\alpha} \psi(u(x)x^\lambda)\phi(x, s, \psi)dx,$$

where $\lambda = (\lambda_\alpha)$ and σ is a certain cone in F^d_v.
Fourier transforms at $\nu \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_\alpha|^{s_\alpha} \psi(u(x)x^\lambda) \phi(x, s, \psi) dx,$$

where $\lambda = (\lambda_\alpha)$ and σ is a certain cone in F_d^ν.

We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009).
Complications for integral points

Fourier transforms at $\nu \in S$ have poles interacting with the main term. For example, for $D = X \setminus G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$\int_{\sigma} \prod_{\alpha} |x_{\alpha}|^{s_{\alpha}} \psi(u(x)x^{\lambda})\phi(x, s, \psi)dx,$$

where $\lambda = (\lambda_{\alpha})$ and σ is a certain cone in F_v^d.

We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009). Similar integrals appeared in the work of Cluckers (2010) on Analytic van der Corput Lemma....
Summary

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.
Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.

The spectral method to establish asymptotics for the number of integral points of bounded height leads to interesting ν-adic oscillatory integrals. This should allow to establish asymptotics for $\mathcal{O}_F, \mathcal{S}$-integral points on general quasi-projective embeddings of algebraic groups.
Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of \textit{all balls} arising in analytic and adelic geometry, in particular, \textit{height balls}.

The \textit{spectral} method to establish asymptotics for the number of integral points of bounded height leads to interesting ν-adic oscillatory integrals. This should allow to establish asymptotics for $\mathcal{O}_{F,S}$-integral points on general quasi-projective embeddings of algebraic groups.

A framework to generalize Manin’s conjectures to \textit{integral} points.