Lower bounds on the size of semidefinite programs

James Lee
Univ of Washington.

Prasad Raghavendra
U.C.Berkeley.

David Steurer
Cornell University
Extended formulations of polytopes

Traveling salesman problem (TSP)

given $n \times n$ cost matrix $D = (d_{ij})$, find minimum cost n-tour

Traveling salesman polytope

$$\text{tsp}_n = \text{convex-hull } \mathbf{1}_E(C) \in \{0,1\}^{n\times2} \quad C \text{ is } n\text{-tour}$$

Characterization: solving TSP on n cities same as optimizing linear functions over tsp_n

tsp_n has exponential number of facets \implies no "direct" LP algorithms
Extended formulations of polytopes

idea: reduce optimizing linear functions over \(\text{tsp} \downarrow n \) to optimizing linear functions over polytope defined by *few linear inequalities*

Size-\(R \) extended LP formulation for \(TSP \downarrow n \)

size-\(R \) polytope \(P \), defined by \(\leq R \) linear inequalities, such that \(\text{tsp} \downarrow n \) is image of \(P \) under some linear map \(\ell \)

\[
\begin{array}{ccc}
\text{tsp} \downarrow n & \xleftarrow{\text{linear map } \ell} & P \\
\mathbb{R}^{n^2} & \text{for } R \gg n^2 & \mathbb{R}^R
\end{array}
\]

size-\(R \) SDP algorithm for \(\text{tsp} \downarrow n \) (aka size-\(R \) extended SDP formulation)

size-\(R \) spectrahedron \(P \), defined by \(R \times R \) linear matrix inequality, such that \(\text{tsp} \downarrow n \) is image of \(P \) under some linear map \(\ell \)

\[
\begin{array}{ccc}
\text{tsp} \downarrow n & \xleftarrow{\text{linear map } \ell} & P \\
\mathbb{R}^{n^2} & \text{for } R \gg n^2 & \mathbb{R}^R
\end{array}
\]
complicated polytopes can have simple lifts

(here: complicated = many inequalities; simple = few inequalities)

unit ℓ_1-ball

\[
\{ \sum_{i=1}^{n} |x_i| \leq 1 \mid x \in \mathbb{R}^n \}
\]

projection

\[
(\text{Id} \& 0)
\]

\[
\{-y \leq x \leq y \sum_{i=1}^{n} y_i \leq 1 \mid x, y \in \mathbb{R}^n \}
\]

comparison: 2^n linear inequalities vs. $2n+1$ linear inequalities

idea: introduce variables for absolute values $|x|$

other polytopes: spanning trees, Held–Karp TSP

LP / SDP hierarchies introduce new variables systematically
lower bounds on extended LP/SDP formulations

minimum size of LP/SDP algorithms for $\text{tsp} \downarrow n$

symmetric LP: $2 \uparrow \Omega(n)$
[Yannakakis]

symmetric SDP: $2 \uparrow \Omega(n)$
[Lee-Raghavendra-S.-Tan Fawzi-Saunderson-Parrio]

general LP: $2 \uparrow \Omega(n)$
[Fiorini-Massar-Pokutta-Tiwary-de Wolf Rothvoss]

general SDP: $2 \uparrow n \uparrow 1/13$
[this talk]

Similar lower bounds for the $\text{CUT} \downarrow n$ and $\text{Correlation} \downarrow n$ polytopes.

Unconditional lower bounds for restricted but powerful model of computation.
GW SDP for MaxCut

Semidefinite Program for MaxCut:
[Goemans-Williamson 94]

Maximize $\frac{1}{4} \sum_{(i,j) \in E} |v_i - v_j|^2$

Subject to $|v_i|^2 = 1$

Spectrahedron:

- Y is a $n \times n$-p.s.d matrix

 $Y_{ii} = 1$ for all $i \in [n]$

Maximize:

$\frac{1}{4} \sum_{(i,j) \in E} (Y_{ii} + Y_{jj} - 2Y_{ij})$
Generic SDP for MaxCut

Maximize $\langle w, Y \rangle$
subject to
$Y \in \text{spectrahedron } S$

$S = S \downarrow \mathbb{R}^+ \cap \{ Y | AY = b \}$

$S \downarrow \mathbb{R}^+ = \text{cone of } \mathbb{R} \times \mathbb{R} \text{ p.s.d matrices}$

Affine space $AY = b$ ($Y \in \text{size of SDP} = \mathbb{R} \uparrow \mathbb{R} \times \mathbb{R}$)
Expressing objective value:
For all integer assignments \(x \in \{-1,1\}^n \), the corresponding solution \(Q \downarrow x \in S \).

Maximize \(\langle w \downarrow G , Y \rangle \) subject to \(Y \in \text{spectrahedron } S \)
\[
S = S_{\downarrow R^+} \cap \{ Y | AY = b \}
\]

Every graph \(G \) has a ‘linearization’ \(w \downarrow G \in R^+ R \times R \)

General SDP Relaxation for MaxCut (on \(n \) vertices).
Result (Informal Statement):

For every Max-CSP (like MaxCut),

The k-round Lasserre/low-degree SOS SDP relaxation achieves the best approximation among all SDP relaxations of roughly the same size.

Theorem: For every integer $k \in \mathbb{N}$, for every Max-CSP,

A SDP relaxation of size $\frac{n^k}{C}$ is no more powerful than a degree k-SoS SDP relaxation (C = absolute constant)

Using known lower-bounds against low-degree SoS hierarchies,

Corollary: For every integer k, for every Max-CSP,

a SDP relaxation of size $\frac{n^k}{C}$ cannot yield the following approximations:

- $\frac{7}{8} + \epsilon$-approximation for Max-3-SAT for any constant ϵ.
- $\frac{1}{2} + \epsilon$-approximation for Max-3-LIN for any constant ϵ.
Prior Work
(Linear Programming Extended Formulations)

- For `symmetric LPs’, an exponential lower bound for exact TSP and exact non-bipartite matching.
 [Yannakakis 89]

- For general LPs, an exponential lower bound for exact TSP.
 [Fiorini-etal]

- For general LPs, an exponential lower bound for exact Perfect Matching.
 [Rothvoss]

In a slightly-more restrictive model,

- A $2^{\Omega(n^{1/2} \epsilon)}$ -lower bound for $n^{1/2} - \epsilon$ -approximation to Max-Clique.
 [Fiorini etal]

- A $2^{\Omega(n^{1-\epsilon})}$ -lower bound for $n^{1-\epsilon}$ -approximation to Max-Clique.
Prior Work
(Linear Programming Extended Formulations)

Theorem: [Chan-Lee-R-Steurer]
For every integer $k < \log n / \log \log n$, for every Max-CSP, an LP relaxation of size n^k is no more powerful than a $O(k)$-round Sherali-Adams Linear Program.
Low Degree Sum-of-Squares SDP Hierarchies

(Lasserre/Parrillo SDP hierarchy)
Revisiting MaxCut
Semidefinite Program

Integer Program:
Domain: $x_{1}, x_{2}, x_{3}, ..., x_{n} \in \{-1,1\}$
(x for vertex i)

Maximize:
$\frac{1}{4} \sum_{\{i,j\} \in \mathcal{E}} (x_{i} - x_{j})^2$
(Number of Edges Cut)

Convex Extension of Integer Program:

Domain: Probability density D over assignments $x \in \{-1,1\}^{n}$

Maximize:
$\mathbb{E}[D(x) \cdot \frac{1}{4} \sum_{\{i,j\} \in \mathcal{E}} (x_{i} - x_{j})^2]$
(Expected Number of Edges Cut under D)
Degree d Sum-of-Squares SDP

Convex Extension of Integer Program:

Domain: Probability density D over assignments $x \in \{-1,1\}^n$

Maximize: $E \downarrow x \left[D(x) \cdot \frac{1}{4} \sum_{(i,j) \in E \uparrow \downarrow} (x \downarrow i - x \downarrow j)^2 \right]$
(Expected Number of Edges Cut under D)

Subject to: $E \downarrow x D(x) = 1$

$D(x) \geq 0 \quad \forall x \in \{0,1\}^n$

$E \downarrow x D(x) \cdot p \uparrow 2 \quad (x) \geq 0$

$\forall p \text{ with } \deg(p) \leq d$

$D = \text{``pseudodensity''}$
Sum of Squares Proofs

Degree d Sum-of-Squares SDP

Maximize:

\[E \downarrow x [D(x) \cdot \frac{1}{4} \sum (i,j) \in E \uparrow \updownarrow (x \downarrow i - x \downarrow j)^2] \]

Subject to:

\[E \downarrow x D(x) = 1 \]

\[E \downarrow x [D(x) \cdot p \uparrow 2 (x)] \geq 0 \]

\[\forall p \text{ with } \deg(p) \leq d \]

Dual SDP

Minimize \(c \) such that,

\[c - G(x) = \sum j \uparrow \downarrow p \downarrow j \uparrow 2 (x) \]

for some degree d polynomials \(p \downarrow j \uparrow 2 \)

Definition (SoS degree):

Given \(f: \{0,1\}^n \to R \),

\[\deg_{sos} (f) = \text{minimum } d \text{ such that } f = \sum j \uparrow \downarrow p \uparrow 2 (x) \]

for some \(\{ p \downarrow j \} \) with \(\deg(p \downarrow j \uparrow 2) \leq d \)
Degree d Sum-of-Squares SDP

Maximize:
\[
E\downarrow x \left[D(x) \cdot \frac{1}{4} \sum_{(i,j) \in E\uparrow \downarrow} (x\downarrow_i - x\downarrow_j)^2 \right]
\]

Subject to:
\[
E\downarrow x \ D(x) = 1
\]
\[
E\downarrow x \left[D(x) \cdot p\uparrow \downarrow^2 (x) \right] \geq 0
\]
for some degree d polynomials $p\downarrow j\uparrow \downarrow$

Dual SDP

Minimize c

such that,
\[
c\!-\!G(x)\!=\!\sum_{j\uparrow \downarrow} p\downarrow j\uparrow \downarrow^2 (x)
\]

for some degree d polynomials $p\downarrow j\uparrow \downarrow$

Definition (SoS degree):
Given $f:\{0,1\}^n \to \mathbb{R}$,
\[
sosdeg(f) = \text{minimum } d \text{ such that } f = \sum_{j\uparrow \downarrow} p\downarrow j\uparrow \downarrow^2 (x)
\]
for some $\{p\downarrow j\}$ with $\deg(p\downarrow j\uparrow \downarrow) \leq d$
Duality

Degree d Sum-of-Squares SDP
Maximize:
\[E \downarrow x \ [D(x) \cdot \frac{1}{4} \sum (i,j) \in E \uparrow \downarrow (x_i - x_j)^2] \]
Subject to:
\[E \downarrow x \ D(x) = 1 \]
\[E \downarrow x [D(x) \cdot p \uparrow \downarrow (x)] \geq 0 \]
\[\forall p \text{ with } \deg(p) \leq d \]

Dual SDP
Minimize \[c \]
such that,
\[\text{sosdeg}(c - G(x)) = d \]

By strong duality,
\[SDPOPT(G) > c \iff \text{sosdeg}(c - G(x)) > d \]
\[\text{cone}(\{ p \downarrow \uparrow \downarrow | \deg(p \downarrow \uparrow \downarrow) \leq d \}) \]
Yannakakis’ characterization of extension complexity
Theorem: For any graph G, SDP-OPT if and only if

Maximize $(w \downarrow G, Y)$
subject to $Y \in \text{spectrahedron } S$

$S = S \downarrow R^+ \cap \{Y | AY = b\}$
SoS characterization of SDPs

Maximize \((w \downarrow G, Y) \)

subject to

\(Y \in \text{spectrahedron } S \)

\[S = S \downarrow R \uparrow + \cap \{ Y | AY = b \} \]

For \(d \)-round Lasserre SDP,

\[V = \{ \text{vector space of polynomials of degree } \leq d \} \]

Vector Space of functions (\(\{-1,1\}^n \rightarrow \mathbb{R} \))

\[V = \text{span}\{ v \downarrow \uparrow 1, \ldots, v \downarrow R \uparrow R \} \]

Minimize \(c \)

such that

\[c - G(x) = \sum q \in V \downarrow \uparrow \deg q \downarrow 2 \ (x) \]

Degree d SOS SDP for MaxCut

Minimize \(c \)

such that

\[c - \sum (i,j) \in E \downarrow \uparrow w \downarrow ij (x \downarrow i - x \downarrow j) \uparrow 2 = \sum \deg (q) \leq d \downarrow \uparrow q(x) \uparrow 2 \quad \text{for } x \in \{-1,1\}^n \]
PSD rank

Definition:
PSD rank(M) = smallest R so that

\[\exists \text{ factorization: } M = P \cdot Q^\top \]

where rows of P, Q are $R \times R$ p.s.d matrices

Theorem: [Yannakakis]

\[\exists \text{ size-}R \text{ SDP with approx. ratio } \alpha \text{ for } n \text{-variable MAXCUT} \]

\[\iff \text{psd-rank}(M) \leq R \text{ for } \]

variable assignments $x \in \{0,1\}^n$

MAXCUT instances G in n variables

\[M(G,x) = \alpha \cdot \max(G) - G(x) \]
Theorem: [Yannakakis]

\[\exists \text{ size-} R \text{ SDP with approx. ratio } \alpha \text{ for } n\text{-variable MAXCUT} \]
\[\iff \text{ psd-rank}(M) \leq R \text{ for } \]
\[\text{variable assignments } x \in \{0,1\}^n \]

MAXCUT instances \(G \) in \(n \) variables

\[M(G,x) = \alpha \cdot \max(G) - G(x) \]

Proof: Suppose following SDP gives an \(\alpha \)-approximation.

Maximize \(\langle w \downarrow G, Y \rangle \)
subject to
\(Y \in \text{Spectrahedron } S \)
\(S = S \downarrow R \uparrow + \cap \{ Y | AY = b \} \)

For each assignment \(x \in \{0,1\}^n \rightarrow Q \downarrow x \in S \downarrow R \uparrow + \)

For all graphs \(G \)
\[G(x) = \langle w \downarrow G, Q \downarrow x \rangle \]
nonneg.-rank and psd-rank

factorization: \(M = P \cdot Q^\top \)

two ways to evaluate:

1. inner products of rows of \(P \) and \(Q \)
2. outer products of columns of \(P \) and \(Q \)

for nonneg.-rank:

nonneg. rows \(\iff \) nonneg. columns

\(\rightarrow \) can use both ways to evaluate factorization

all known lower bounds work with outer-product view (nonnegative rectangles)

for psd-rank

psd rows \(\not\iff \) psd columns
Main Technical Result
main theorem

main theorem: suppose f has sos deg > d. then exists $C \downarrow f \geq 1$ such that

$$\text{psd-rank}(M \downarrow n \uparrow f) \geq C \downarrow f \cdot n \uparrow d / 5$$

for all $n \in \mathbb{N}$

points $x \in \{0,1\}^n$

subsets $S \subseteq [n]$ with $|S| = m$

evaluations of f applied to subcubes

$M \downarrow n \uparrow f (S, x) = f(x \downarrow S)$

$x \downarrow S = (x \downarrow s_1, \ldots, x \downarrow s_m)$ for $S = \{s_1, \ldots, s_m\}$
Main theorem: suppose f has sos deg $> d$. then exists $C \downarrow f \geq 1$ such that $\text{psd-rank}(M \downarrow n \uparrow f) \geq C \downarrow f \cdot n \uparrow d / 5$ for all $n \in \mathbb{N}$

Main theorem \Rightarrow Optimality of Lasserre SDP

Proof: Suppose degree d Lasserre has an α-integrality gap for MaxCut

$\Leftrightarrow \exists$ some graph G such that $\deg \downarrow \text{sos} (\alpha \cdot \max(G) - G(x)) > d$

\Leftrightarrow For $f = \alpha \cdot \max(G) - G(x)$

$\text{psd-rank}(M \downarrow n \uparrow f) \geq C \downarrow f \cdot n \uparrow d / 5$

\Leftrightarrow No SDP of size $o(n \uparrow d / 5)$ gets an α–approximation.
main theorem: suppose \(f \) has sos deg > \(d \). then exists \(C \downarrow f \geq 1 \) such that
\[
\text{psd-rank}(M \downarrow n \uparrow f) \geq C \downarrow f \cdot n \uparrow d / 5 \quad \text{for all } n \in \mathbb{N}
\]

subsets \(S \subseteq [n] \) with \(|S| = m \)

points \(x \in \{0,1\}^n \)

evaluations of \(f \) applied to subcubes

\[
M \downarrow n \uparrow f (S,x) = f(x \downarrow S)
\]

\(x \downarrow S = (x \downarrow s_1, \ldots, x \downarrow s_m) \) for \(S = \{s_1, \ldots, s_m\} \)

sanity check: \(M \downarrow n \uparrow f \) does not have low-deg. factorizations \((\text{Tr } P \downarrow S Q \downarrow x) \downarrow S, x\)

suppose \(Q \downarrow x = R(x) \uparrow 2 \) and \(x \mapsto R(x) \) has degree at most \(d/2 \)

then, \(\text{Tr } P \downarrow S Q \downarrow x = \|P \downarrow S \uparrow 1/2 \cdot R(x)\| \downarrow F \uparrow 2 \)

\(\rightarrow \) sum of squares of degree-\(d/2 \) polynomials for each \(S \)

\(\rightarrow \) cannot be factorization of \(M \downarrow n \uparrow f \) (because \(f \) has sos deg > \(d \))
Separating from low-degree factorizations

By duality, \(\text{sos-deg}(f) > d \) if and only if

\[\exists \text{ deg.-}d \text{ pseudo-distr. } D \text{ with } \mathbb{E} \downarrow x D(x)f(x) < 0 \]

\[
\text{cone}(\{p \downarrow j \uparrow 2 \mid \text{deg}(p \downarrow j \uparrow 2) \leq d\})
\]

Idea: Use the linear functional \(\langle D, N \rangle = E \downarrow S, x D(x \downarrow S)N(S, x) \) to separate \(M \) from all low-psd rank matrices?

Know: \[\mathbb{E} \downarrow S, x D(x \downarrow S)M \downarrow n \uparrow f(S, x) < -\varepsilon \]

To show: \[\mathbb{E} \downarrow S, x D(x \downarrow S) \cdot \text{Tr } P \downarrow S Q \downarrow x \geq -\varepsilon \text{ for all candidate factor. } (\text{Tr } P \downarrow S Q \downarrow x) \downarrow S, x \]
main theorem: suppose f has sos deg $> d$. then exists $C \downarrow f \geq 1$ such that
\[\text{psd-rank}(M \downarrow n \uparrow f) \geq C \downarrow f \cdot n \uparrow d / 5 \] for all $n \in \mathbb{N}$

points $x \in \{0,1\} \uparrow n$
evaluations of f

subsets $S \subseteq [n]$ with $|S| = m$
evaluations of f applied to subcubes

strategy: approximate general low-rank factorization by low-deg. factor.

1. bootstrapping: general low-rank factor. \rightarrow moderate deg. factor. (deg. $n \uparrow \varepsilon$)

2. boosting: $M \downarrow n \uparrow f$ does not have moderate deg. factorization

idea: quantum entropy maximization / learning; quite mysterious

idea: random restriction; quite standard
step 2: boosting via random restriction

let $D:\{0,1\}^m\to\mathbb{R}$ be deg.-d pseudo-distribution

let $(\text{Tr } P\downarrow S Q\downarrow x)\downarrow S, x$ be any rank-$n\uparrow d/10$ psd factorization with max / avg $= O(1)$

suppose $Q\downarrow x = R(x)\uparrow 2$ and $x\mapsto R(x)$ has deg $\leq n\uparrow \varepsilon$.

then, $\mathbb{E}\downarrow S, x D(x\downarrow S) \cdot \text{Tr } P\downarrow S Q\downarrow x \geq -o\downarrow D, m$ (1)

sanity check: conclusion true if $R(x)$ has deg $\leq d/2$

observation: enough if $x\mapsto P\downarrow S \uparrow 1/2 R(x)$ has deg $\leq d/2$ in S

idea: deg-$n\uparrow \varepsilon$ polynomial very close to deg-$d/2$ after restriction to random set S

$$\mathbb{P}\downarrow S \left(\text{deg}−n\uparrow \varepsilon \text{ character } \chi\downarrow T \text{ has deg}>d/2 \text{ in } S \right)$$

$$= \mathbb{P}\downarrow S \left(|T\cap S|>d/2 \right) \leq (|S| \cdot |T|/n)\uparrow d/2 \approx n\uparrow−d/2$$

small enough to counter effect of $P\downarrow S$
Thank You