Candidate Hard Unique Game

Dana Moshkovitz
MIT

Joint work with Subhash Khot, NYU

Full version: on my homepage and to appear in STOC’16.
2LIN(p): Given a system of linear equations over variables $x_1,...,x_n$, where each equation is of the form $x_i - x_k = b_{ik}$ (mod p), and there is an assignment that satisfies $1-\delta$ fraction of the equations, find an assignment that satisfies as many equations as possible.

For example: $p=2$. There is an assignment that satisfies 10 equations. How many can you satisfy?

\begin{align*}
x_1 + x_2 &= 0 & x_1 + x_5 &= 0 \\
x_2 + x_4 &= 1 & x_2 + x_3 &= 1 \\
x_3 + x_5 &= 0 & x_3 + x_6 &= 0 \\
x_4 + x_3 &= 0 & x_4 + x_7 &= 0 \\
x_5 + x_6 &= 0 & x_5 + x_4 &= 1 \\
x_6 + x_7 &= 0 & x_6 + x_1 &= 1 \\
x_7 + x_1 &= 1 & x_7 + x_2 &= 1
\end{align*}
The Unique Games Conjecture

For sufficiently large $p = p(\varepsilon, \delta)$ it is NP-hard: given $2\text{LIN}(p)$ system where $1-\delta$ fraction of equations hold, to find a solution that satisfies ε fraction of equations [Khot-Kindler-Mossel-O’Donnell’04 formulation; original conjecture in Khot’02].
For sufficiently large $p=p(\epsilon, \delta)$ it is NP-hard: given $2\text{LIN}(p)$ system where $1-\delta$ fraction of equations hold, to find a solution that satisfies ϵ fraction of equations [Khot-Kindler-Mossel-O’Donnell’04 formulation; original conjecture in Khot’02].

For a large family of problems (including Max-Cut, Vertex-Cover, etc etc), “basic SDP” gives the best efficient approximation algorithm [KR’03, KKMO’04, Raghavendra’08,...].
Attacks on the UGC
Attacks on the UGC

Weak approximation:

- For small alphabet: $1-O(\sqrt{\delta \log p})$-approx [Khot, Charikar-Makarychev-Makarychev]
- For small $\delta=\delta(n)$: e.g., $n^{-\delta/2}$-approx [Trevisan, Gupta-Talwar, Charikar et al, Chlamtac et al]
Attacks on the UGC

Weak approximation:
- For small alphabet: $1 - O(\sqrt{\delta \log p})$-approx
 [Khot, Charikar-Makarychev-Makarychev]
- For small $\delta = \delta(n)$: e.g., $n^{-\delta/2}$-approx
 [Trevisan, Gupta-Talwar, Charikar et al, Chlamtac et al]

Special inputs: E.g., algorithms for random instances
 [Arora-Khot-Kolla-Steurer-Tulsiani-Vishnoi,...]
Attacks on the UGC

Weak approximation:
- For small alphabet: $1 - O(\sqrt{\delta \log p})$-approx [Khot, Charikar-Makarychev-Makarychev]
- For small $\delta = \delta(n)$: e.g., $n^{-\delta/2}$-approx [Trevisan, Gupta-Talwar, Charikar et al, Chlamtac et al]

Long time: Time $2^{n \text{poly}(\delta)}$ [Arora-Barak-Steurer]

Special inputs: E.g., algorithms for random instances [Arora-Khot-Kolla-Steurer-Tulsiani-Vishnoi,...]
Attacks on the UGC

Weak approximation:
- For small alphabet: $1 - 0(\sqrt{\delta \log p})$-approx [Khot, Charikar-Makarychev-Makarychev]
- For small $\delta = \delta(n)$: e.g., $n^{-\delta/2}$-approx [Trevisan, Gupta-Talwar, Charikar et al, Chlamtac et al]

Special inputs: E.g., algorithms for random instances [Arora-Khot-Kolla-Steurer-Tulsiani-Vishnoi,...]

Long time: Time $2^{n \text{poly}(\delta)}$ [Arora-Barak-Steurer]

Candidate algorithmic method: Lasserre (Sum of Squares) hierarchy of semidefinite programs.
- Generalizes all of the above [Barak-Raghavendra-Steurer, Guruswami-Sinop].
Work towards the UGC
Work towards the UGC

Hardness for harder problems:
- Satisfy many equations: $\varepsilon \geq 1-(11/8)\delta$ [..., Håstad-Huang-Manokaran-O’Donnell-Wright]
- Few equations can be satisfied: $\delta \geq 1/2$ [Feige-Reichman, O’Donnell-Wright]
Work towards the UGC

Hardness for harder problems:
- Satisfy many equations: $\varepsilon \geq 1 - (11/8) \delta$ [Håstad-Huang-Manokaran-O’Donnell-Wright]
- Few equations can be satisfied: $\delta \geq 1/2$ [Feige-Reichman, O’Donnell-Wright]

Hardness for special algorithms:
Counterexamples to basic SDP & weak hierarchies [Feige-Schechtman, Khot-Vishnoi, Khot-Saket, Raghavendra-Steurer]
Work towards the UGC

Hardness for harder problems:
- Satisfy many equations: $\varepsilon \geq 1-(11/8)\delta$ [..., Håstad-Huang-Manokaran-O’Donnell-Wright]
- Few equations can be satisfied: $\delta \geq 1/2$ [Feige-Reichman, O’Donnell-Wright]

Hardness for special algorithms:
Counterexamples to basic SDP & weak hierarchies [Feige-Schechtman, Khot-Vishnoi, Khot-Saket, Raghavendra-Steurer]

Candidate hard unique game (this work): how might we
(i) Rule out poly-time algorithms for unique games based on plausible complexity assumptions.
(ii) Unconditionally, rule out poly-time Lasserre based algorithms for unique games.
How would a proof of the Unique Games Conjecture look like?

<table>
<thead>
<tr>
<th>Reduction:</th>
<th>3SAT</th>
<th>2LIN(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>completeness</td>
<td>satisfiable</td>
<td>(1-δ)-satisfiable</td>
</tr>
<tr>
<td>soundness</td>
<td>unsatisfiable</td>
<td>ε-satisfiable</td>
</tr>
<tr>
<td>input size</td>
<td>N</td>
<td>M=N^c</td>
</tr>
<tr>
<td>conjectured lower bound</td>
<td>$2^{\Omega(N)}$</td>
<td>$2^{\Omega(M^{1/c})}$</td>
</tr>
</tbody>
</table>
Weak Unique Games Conjecture

<table>
<thead>
<tr>
<th>Reduction:</th>
<th>random kCSP</th>
<th>\rightarrow 2LIN(2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>completeness</th>
<th>$1-o(1)$-satisfiable</th>
<th>$1-\delta$ -satisfiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>soundness</td>
<td>$o(1)$-satisfiable</td>
<td>$1-A\cdot\delta$ -satisfiable for large A</td>
</tr>
</tbody>
</table>

Want: In soundness case, \forall assignment $\text{UNSAT}(\text{assignment}) > A\cdot\text{UNSAT}($completeness$)$
Weak Unique Games Conjecture

<table>
<thead>
<tr>
<th>Reduction:</th>
<th>2LIN(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>random kCSP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Completeness</th>
<th>1-o(1)-satisfiable</th>
<th>1-δ-satisfiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soundness</td>
<td>o(1)-satisfiable</td>
<td>1-A·δ-satisfiable for large A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input Size</th>
<th>N</th>
<th>M = 2^{βN/c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjectured Lower Bound</td>
<td>2^{βN}</td>
<td>M^c</td>
</tr>
</tbody>
</table>
Candidate Hard Unique Game

- We show a reduction from random kCSP to $2\text{LIN}(2)$.
- We prove that in the soundness case, for certain natural assignments,

 $\text{UNSAT}(\text{assignment}) > S \cdot \text{UNSAT(completeness)}$.
- Generalizing to all assignments, and thereby proving the weak UGC, is tightly connected to a question on Gaussian isoperimetry.
Gaussian Isoperimetry

- **Sudakov-Tsirelson, Borell 1975**: For \mathbb{R}^n with Gaussian measure, the volume-$\frac{1}{2}$ sets with least surface area are half-spaces.

 Noise-Test($f: \mathbb{R}^n \rightarrow \{-1, 1\}$ where $E[f]=0$)
 - Pick Gaussian $x, y \in \mathbb{R}^n$. Set $x_{\delta, y} = e^{-\delta}x + \sqrt{1-e^{-2\delta}}y$.
 - Accept if $f(x) = f(x_{\delta, y})$.

- **Erhard’86, Carlen-Kerce’01, Chianci et al’11, Mossel-Neeman’13-14**: Half-spaces, and only half-spaces, maximize the acceptance probability. Moreover, near max acceptance probability occurs only for near half-spaces.
Gaussian Isoperimetry

- **Sudakov-Tsirelson, Borell 1975**: For \mathbb{R}^n with Gaussian measure, the volume-$(1/2)$ sets with least surface area are half-spaces.

 \[
 \text{Noise-Test}(f: \mathbb{R}^n \to \{-1,1\} \text{ where } \mathbb{E}[f]=0)
 \]
 - Pick Gaussian $x, y \in \mathbb{R}^n$. Set $x_{\delta,y} = e^{-\delta}x + \sqrt{1-e^{-2\delta}}y$.
 - Accept if $f(x) = f(x_{\delta,y})$.

- **Erhard’86, Carlen-Kerce’01, Chianci et al’11, Mossel-Neeman’13-14**: Half-spaces, and only half-spaces, maximize the acceptance probability. **Moreover**, near max acceptance probability occurs only for *near* half-spaces.

In our reduction, variables correspond to points $x \in \mathbb{R}^n$. Some of the equations are of the form $x - x_{\delta,y} = 0$.
Gaussian Isoperimetry

• **Sudakov-Tsirelson, Borell 1975**: For \mathbb{R}^n with Gaussian measure, the volume-$(1/2)$ sets with least surface area are half-spaces.

\[
\text{Noise-Test}(f: \mathbb{R}^n \rightarrow \{-1, 1\} \text{ where } E[f] = 0)
\]
- Pick Gaussian $x, y \in \mathbb{R}^n$. Set $x_{\delta, y} = e^{-\delta}x + \sqrt{(1-e^{-2\delta})}y$.
- Accept if $f(x) = f(x_{\delta, y})$.

• **Erhard'86, Carlen-Kerce'01, Chianci et al'11, Mossel-Neeman'13-14**: Half-spaces, and only half-spaces, maximize the acceptance probability. **Moreover**, near max acceptance probability occurs only for near half-spaces.

• **Mossel-Neeman'16 (motivated by our work)**: For every f define its shifts as $f_{\delta, y}(x) = f(x_{\delta, y})$. Then, for some $c(\delta, \gamma) > 0$,

In our reduction, variables correspond to points $x \in \mathbb{R}^n$. Some of the equations are of the form $x - x_{\delta, y} = 0$.
Gaussian Isoperimetry

- **Sudakov-Tsirelson, Borell 1975**: For \mathbb{R}^n with Gaussian measure, the volume-$\frac{1}{2}$ sets with least surface area are half-spaces.

 Noise-Test($f: \mathbb{R}^n \to \{-1, 1\}$ where $\mathbb{E}[f]=0$)
 - Pick Gaussian $x, y \in \mathbb{R}^n$. Set $x_{\delta, y} = e^{-\delta}x + \sqrt{1-e^{-2\delta}}y$.
 - Accept if $f(x) = f(x_{\delta, y})$.

- **Erhard’86, Carlen-Kerce’01, Chianci et al’11, Mossel-Neeman’13-14**: Half-spaces, and only half-spaces, maximize the acceptance probability. *Moreover*, near max acceptance probability occurs only for near half-spaces.

- **Mossel-Neeman’16 (motivated by our work)**: For every f define its shifts as $f_{\delta, y}(x) = f(x_{\delta, y})$. Then, for some $c(\delta, \gamma) > 0$,

 Noise-Test
 - Pick Gaussian $x, y \in \mathbb{R}^n$. Set $x_{\delta, y} = e^{-\delta}x + \sqrt{1-e^{-2\delta}}y$.
 - Accept if $f(x) = f(x_{\delta, y})$.

 In our reduction, variables correspond to points $x \in \mathbb{R}^n$. Some of the equations are of the form $x - x_{\delta, y} = 0$.

- A hope: A stronger statement, tailored to our construction, would suffice to prove soundness.
How to prove optimal inapproximability results?

1. **PCP Theorem**: $3\text{LIN}(2)$ is NP-hard to approximate to within some constant.

2. **Parallel repetition**: Constraints on size-r sets S of $3\text{LIN}(2)$ variables (typically $r=O(1)$)

3. **Long code**: Constraints on encodings of assignments to sets S.
How to prove optimal inapproximability results?

1. **PCP Theorem:** $3\text{LIN}(2)$ is NP-hard to approximate to within some constant.

2. **Parallel repetition:** Constraints on size-r sets S of $3\text{LIN}(2)$ variables (typically $r = O(1)$).

3. **Long code:** Constraints on encodings of assignments to sets S.

Long code is replaced with real code.
How to prove optimal inapproximability results?

1. **PCP Theorem:** $3\text{LIN}(2)$ is NP-hard to approximate to within some constant.

 We take all sets of $r=N^{0.99}$ variables

2. **Parallel repetition:** Constraints on size-r sets S of $3\text{LIN}(2)$ variables (typically $r=O(1)$)

3. **Long code:** Constraints on **encodings** of assignments to sets S.

 Long code is replaced with real code
The Long Code and Its Unique Test

Long code: encode $s \in \{0,1\}^n$ by $F(f) = f(s)$ $\forall f : \{0,1\}^n \rightarrow \{0,1\}$.

Dictator view: when representing f's as vectors in $\{0,1\}^{2n}$, the encoding takes the s'th coordinate from each f.

Codeword test: Given F that assigns each f either 0 or 1,

- $\text{UNSAT}(\text{dictator}) = \delta$.
- $\text{UNSAT}(\text{junta}) = O(\delta)$ (junta is a function of $O(1)$ dictators).
- **Thm (KKMO+MOO):** $\text{UNSAT} (\text{“non-juntas”}) = \Omega(\sqrt{\delta})$.

The Long Code and Its Unique Test

Long code: encode \(s \in \{0,1 \}^n \) by \(F(f) = f(s) \ \forall \ f : \{0,1 \}^n \rightarrow \{0,1 \} \).

Dictator view: when representing \(f \)'s as vectors in \(\{0,1 \}^{2^n} \), the encoding takes the \(s \)'th coordinate from each \(f \).

Codeword test: Given \(F \) that assigns each \(f \) either 0 or 1,

\[
\{0,1 \}^{2^n}
\]

\(\text{UNSAT(dictator)} = \delta \).

\(\text{UNSAT(junta)} = O(\delta) \) (junta is a function of \(O(1) \) dictators).

Thm (KKMO+MOO): \(\text{UNSAT(“non-juntas”)} = \Omega(\sqrt{\delta}) \).
The Long Code and Its Unique Test

Long code: encode \(s \in \{0,1\}^n \) by \(F(f) = f(s) \) \(\forall \) \(f : \{0,1\}^n \rightarrow \{0,1\} \).

Dictator view: when representing \(f \)'s as vectors in \(\{0,1\}^{2^n} \), the encoding takes the \(s \)'th coordinate from each \(f \).

Codeword test: Given \(F \) that assigns each \(f \) either 0 or 1,

\[
\{0,1\}^{2^n} \rightarrow \{0,1\}^n \rightarrow \{0,1\}
\]

UNSAT(dictator) = \(\delta \).

UNSAT(junta) = \(O(\delta) \) (junta is a function of \(O(1) \) dictators).

Thm (KKMO+MOO): \(\text{UNSAT(“non-juntas”) = } \Omega(\sqrt{\delta}). \)
The Long Code and Its Unique Test

Long code: encode $s \in \{0,1\}^n$ by $F(f) = f(s)$ $\forall f : \{0,1\}^n \to \{0,1\}$.

Dictator view: when representing f's as vectors in $\{0,1\}^{2n}$, the encoding takes the s'th coordinate from each f.

Codeword test: Given F that assigns each f either 0 or 1,

For every $x \in \{0,1\}^n$, let $f'(x) = f(x)$ with probability $1-\delta$.

UNSAT (dictator) = δ.
UNSAT (junta) = $O(\delta)$ (junta is a function of $O(1)$ dictators).
Thm (KKMO+MOO): $\text{UNSAT}($"non-juntas") = $\Omega(\sqrt{\delta})$.

The Long Code and Its Unique Test

Long code: encode \(s \in \{0,1\}^n \) by \(F(f) = f(s) \) \(\forall f : \{0,1\}^n \to \{0,1\} \).

Dictator view: when representing \(f \)'s as vectors in \(\{0,1\}^{2n} \), the encoding takes the \(s \)'th coordinate from each \(f \).

Codeword test: Given \(F \) that assigns each \(f \) either 0 or 1,

For every \(x \in \{0,1\}^n \), let \(f'(x) = f(x) \) with probability \(1 - \delta \).

UNSAT (dictator) = \delta.

UNSAT (junta) = \(O(\delta) \) (junta is a function of \(O(1) \) dictators).

Thm (KKMO+MOO): \(\text{UNSAT(“non-juntas”) = } \Omega(\sqrt{\delta}) \).
Why known techniques don’t prove the UGC

Long code: encode $s \in \{0,1\}^n$ by $F(f) = f(s) \ \forall \ f: \{0,1\}^n \rightarrow \{0,1\}$.

Consistency test: For two sets of variables, $S \cap R \neq \emptyset$, given F_S encoding assignment to S and F_R encoding assignment to R, check consistency on $S \cap R$.

![Diagram](image)
Why known techniques don’t prove the UGC

Long code: encode $s \in \{0,1\}^n$ by $F(f) = f(s)$ $\forall f: \{0,1\}^n \rightarrow \{0,1\}$.

Consistency test: For two sets of variables, $S \cap R \neq \emptyset$, given F_S encoding assignment to S and F_R encoding assignment to R, check consistency on $S \cap R$.

- Encoding of $S \cap R$ is a part of encoding of S, R.
Why known techniques don’t prove the UGC

Long code: encode $s \in \{0,1\}^n$ by $F(f)=f(s) \forall f:\{0,1\}^n \to \{0,1\}$.

Consistency test: For two sets of variables, $S \cap R \neq \emptyset$, given F_S encoding assignment to S and F_R encoding assignment to R, check consistency on $S \cap R$.

- Encoding of $S \cap R$ is a part of encoding of S, R.
- But a tiny part! Might not correspond to the global encoding.
Why known techniques don’t prove the UGC

Long code: encode $s \in \{0,1\}^n$ by $F(f)=f(s)$ $\forall f:\{0,1\}^n \rightarrow \{0,1\}$.

Consistency test: For two sets of variables, $S \cap R \neq \emptyset$, given F_S encoding assignment to S and F_R encoding assignment to R, check consistency on $S \cap R$.

- Encoding of $S \cap R$ is a part of encoding of S, R.
- But a tiny part! Might not correspond to the global encoding.
- Can prove 3LIN hardness via “self-correction”: $f(s)=(f+g)(s)+g(s)$.
Why known techniques don’t prove the UGC

Long code: encode \(s \in \{0,1\}^n \) by \(F(f)=f(s) \ \forall \ f:\{0,1\}^n \to \{0,1\} \).

Consistency test: For two sets of variables, \(S \cap R \neq \emptyset \), given \(F_S \) encoding assignment to \(S \) and \(F_R \) encoding assignment to \(R \), check consistency on \(S \cap R \).

- Encoding of \(S \cap R \) is a part of encoding of \(S \), \(R \).
- But a tiny part! Might not correspond to the global encoding.
- Can prove 3LIN hardness via “self-correction”: \(f(s)=(f+g)(s)+g(s) \).

No unique consistency test!
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode \(s \in \{0,1\}^n \) by \(F(f)=f(s) \) \(\forall \) linear \(f: \{0,1\}^k \rightarrow \{0,1\} \), i.e., \(\forall \ a \in \{0,1\}^n \), \(F(a)=<a,s> \).

Equivalently, \(s \) encoded by the linear function \(F(x)=<x,s> \).
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode $s \in \{0,1\}^n$ by $F(f)=f(s)$ \forall linear $f:\{0,1\}^k \rightarrow \{0,1\}$, i.e., \forall $a \in \{0,1\}^n$, $F(a)=\langle a,s \rangle$.

Equivalently, s encoded by the linear function $F(x)=\langle x,s \rangle$.
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode \(s \in \{0,1\}^n \) by \(F(f)=f(s) \) \(\forall \) linear \(f: \{0,1\}^k \rightarrow \{0,1\} \), i.e., \(\forall a \in \{0,1\}^n, F(a)=\langle a,s \rangle \).

Equivalently, \(s \) encoded by the linear function \(F(x)=\langle x,s \rangle \).

Consistency test: Suppose that we only wish to test consistency between \(S \) and a random set \(R \) where \(|S \cap R|=(1-\delta)n \).
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode $s \in \{0,1\}^n$ by $F(f) = f(s)$ \(\forall\) linear $f: \{0,1\}^k \rightarrow \{0,1\}$, i.e., \(\forall a \in \{0,1\}^n, F(a) = \langle a, s \rangle\).

Equivalently, s encoded by the linear function $F(x) = \langle x, s \rangle$.

Consistency test: Suppose that we only wish to test consistency between S and a random set R where $|S \cap R| = (1-\delta)n$.

- Encoding of $S \cap R$ is part of encoding of S, R.
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode $s \in \{0,1\}^n$ by $F(f)=f(s)$ \(\forall\) linear $f: \{0,1\}^k \rightarrow \{0,1\}$, i.e., \(\forall\) $a \in \{0,1\}^n$, $F(a)=<a,s>$.

Equivalently, s encoded by the linear function $F(x)=<x,s>$.

Consistency test: Suppose that we only wish to test consistency between S and a random set R where $|S \cap R|=(1-\delta)n$.
- Encoding of $S \cap R$ is part of encoding of S, R.
- Union of $S \cap R$ encodings over R covers S encoding.
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode $s \in \{0,1\}^n$ by $F(f) = f(s)$ \forall linear $f : \{0,1\}^k \to \{0,1\}$, i.e., $\forall a \in \{0,1\}^n$, $F(a) = \langle a, s \rangle$.

Equivalently, s encoded by the linear function $F(x) = \langle x, s \rangle$.

Consistency test: Suppose that we only wish to test consistency between S and a random set R where $|S \cap R| = (1-\delta)n$.
- Encoding of $S \cap R$ is part of encoding of S, R.
- Union of $S \cap R$ encodings over R covers S encoding.
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode \(s \in \{0,1\}^n \) by \(F(f) = f(s) \) \(\forall \) linear \(f : \{0,1\}^k \rightarrow \{0,1\} \), i.e., \(\forall \ a \in \{0,1\}^n \), \(F(a) = <a,s> \).

Equivalently, \(s \) encoded by the linear function \(F(x) = <x,s> \).

Consistency test: Suppose that we only wish to test consistency between \(S \) and a random set \(R \) where \(|S \cap R|=(1-\delta)n \).
- Encoding of \(S \cap R \) is part of encoding of \(S, R \).
- Union of \(S \cap R \) encodings over \(R \) covers \(S \) encoding.
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode $s \in \{0,1\}^n$ by $F(f) = f(s)$ \forall linear $f : \{0,1\}^k \rightarrow \{0,1\}$, i.e., \forall $a \in \{0,1\}^n$, $F(a) = \langle a, s \rangle$.

Equivalently, s encoded by the linear function $F(x) = \langle x, s \rangle$.

Consistency test: Suppose that we only wish to test consistency between S and a random set R where $|S \cap R| = (1-\delta)n$.

- Encoding of $S \cap R$ is part of encoding of S, R.
- Union of $S \cap R$ encodings over R covers S encoding.
- Given encodings F_S and F_R, pick uniform $a \in \{0,1\}^n$ where $a_i = 0$ whenever $i \notin S \cap R$. Check $F_S(a) = F_R(a)$.
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode \(s \in \{0,1\}^n \) by \(F(f) = f(s) \) \(\forall \) linear \(f : \{0,1\}^k \rightarrow \{0,1\} \), i.e., \(\forall a \in \{0,1\}^n, F(a) = \langle a, s \rangle \).

Equivalently, \(s \) encoded by the linear function \(F(x) = \langle x, s \rangle \).

Consistency Test: Suppose that we only wish to test consistency between \(S \) and \(R \) where \(|S \cap R| = (1-\delta)n \).
- Encoding of \(S \cap R \) is part of encoding of \(S, R \).
- Union of \(S \cap R \) encodings over \(R \) covers \(S \) encoding.
- Given encodings \(F_S \) and \(F_R \), pick uniform \(a \in \{0,1\}^n \) where \(a_i = 0 \) whenever \(i \notin S \cap R \). Check \(F_S(a) = F_R(a) \).
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode $s \in \{0,1\}^n$ by $F(f) = f(s)$ \forall linear $f : \{0,1\}^k \rightarrow \{0,1\}$, i.e., $\forall a \in \{0,1\}^n$, $F(a) = \langle a, s \rangle$.

Equivalently, s encoded by the linear function $F(x) = \langle x, s \rangle$.

Consistency test: Suppose that we only wish to test consistency between S and a random set R where $|S \cap R| = (1-\delta)n$.
- Encoding of $S \cap R$ is part of encoding of S, R.
- Union of $S \cap R$ encodings over R covers S encoding.
- Given encodings F_S and F_R, pick uniform $a \in \{0,1\}^n$ where $a_i = 0$ whenever $i \notin S \cap R$. Check $F_S(a) = F_R(a)$.

Codeword test: Only BLR test (for uniform a, b, check $F_S(a + b) = F_S(a) + F_S(b)$).
Hadamard, and why it doesn’t help in proving the UGC either

Hadamard: encode \(s \in \{0,1\}^n \) by \(F(f) = f(s) \) \(\forall \) linear \(f: \{0,1\}^k \to \{0,1\} \), i.e., \(\forall a \in \{0,1\}^n, F(a) = \langle a, s \rangle \).

Equivalently, \(s \) encoded by the linear function \(F(x) = \langle x, s \rangle \).

Consistency test: Suppose that we only wish to test consistency between \(S \) and a random set \(R \) where \(|S \cap R| = (1 - \delta)n \).
- Encoding of \(S \cap R \) is part of encoding of \(S, R \).
- Union of \(S \cap R \) encodings over \(R \) covers \(S \) encoding.
- Given encodings \(F_S \) and \(F_R \), pick uniform \(a \in \{0,1\}^n \) where \(a_i = 0 \) whenever \(i \notin S \cap R \). Check \(F_S(a) = F_R(a) \).

Codeword test: Only BLR test (for uniform \(a, b \), check \(F_S(a + b) = F_S(a) + F_S(b) \)).
Real Code: Unique consistency test and Unique codeword test

Real code: encode \(s \in \{1, -1\}^n \) by the periodized half-space \(h(x) = \text{intveral}(\langle s, x \rangle) \) defined over \(\mathbb{R}^n \), where \(\text{interval}: \mathbb{R} \rightarrow \{-1, 1\} \) changes signs at integers.

Consistency test: For a set of variables \(S \), for a random set \(R \) where \(|S \cap R| = (1 - \delta)n \), given encodings \(F_S \) and \(F_R \), pick gaussian \(a \in \mathbb{R}^n \) where \(|a_i| \approx \delta \) whenever \(i \notin S \cap R \). Check \(F_S(a) = F_R(a) \).

Codeword test: Pick gaussian \(x \), perturb it to get \(x' = (1 - \rho)x + \theta y, \ (1 - \rho)^2 + \theta^2 = 1 \). Check \(F_S(x) = F_S(x') \).
Overall Reduction

- Start with 3LIN over variables V, $|V|=N$.
- For every $S \subseteq V$, $|S|=n$, $n=N^{0.99}$, block of variables, supposedly assigned $\{\text{interval}(<s,x>)\}_x$ where s is assignment to S. Denote the assignment $F_S: \mathbb{R}^n \to \{+1,-1\}$.
- **Folding:** $\forall S, i$, $F_S(-x)=-F_S(x)$; $F_S(x_1..1+x_i..x_n)=-F_S(x_1..x_i..x_n)$.
- **Constraint Test:** Pick random S. Pick random constraint α on S's variables. Pick Gaussian x. Check $F_S(x+\alpha)=F_S(x)$.
- **Consistency Test:** Pick random S, R so $|S \cap R|=(1-\delta)n$. Pick Gaussian $x \in \mathbb{R}^n$ where $|x_i|\approx \delta$ whenever $i \notin S \cap R$. Check $F_S(x)=F_R(x)$.
- **Codeword Test:** Pick random S. Pick Gaussian x, perturb it to get $x'=(1-\rho)x+\theta y$, $(1-\rho)^2+\theta^2=1$. Check $F_S(x)=F_S(x')$.
Soundness for Real Code Juntas

• **Observation:** The probability the function $F_s(x) = \text{interval}(<s_1,x>) \cdot \text{interval}(<s_2,x>)$ fails the codeword test is only twice as much as the probability that a real code fails.

• **Definition (real code junta):** A function of $O(1)$ real code codewords.

• **Main Theorem:** In soundness case, if all F_s’s are real code juntas, then $\text{UNSAT}\text{(assignment)} > A \cdot \text{UNSAT}\text{(completeness)}$.
Games with Leakage

• **Direct Product Testing:**
 – A verifier picks random \(S, R \) such that \(|S \cap R| = (1-\delta)n\).
 – Sends one player \(S \). Sends another player \(R \). Each player responds with an assignment to the variables in its set that satisfies all the constraints contained in the set.
 – The verifier checks that the two assignments agree on \(S \cap R \).

• Our consistency test emulates direct product testing, but the two players receive \(x \), which reveals information about \(S \cap R \)!
 – Our construction withstands this leakage!
 – **How?** By restriction to real code juntas, the direct product players can only use limited information about \(x \).
 – We build on parallel repetition information theoretic analysis, but crucially use the structure of leakage (information on random superset of \(S \cap R \)).
Games with Leakage

- **Direct Product Testing:**
 - A verifier picks random S, R such that $|S \cap R| = (1-\delta)n$.
 - Sends one player S. Sends another player R. Each player responds with an assignment to the variables in its set that satisfies all the constraints contained in the set.
 - The verifier checks that the two assignments agree on $S \cap R$.

- Our consistency test emulates direct product testing, but the two players receive x, which reveals information about $S \cap R$!
 - Our construction withstands this leakage!
 - **How?** By restriction to real code juntas, the direct product players can only use limited information about x.
 - We build on parallel repetition information theoretic analysis, but crucially use the structure of leakage (information on random superset of $S \cap R$).
Constraint Satisfaction Problems

kCSP Input: N variables over ± 1; constraints depending on k variables each. Consider Hadamard constraints as [Samorodnitsky-Trevisan].

Goal: find an assignment to the variables that satisfies as many constraints as possible.

Random kCSP: Each constraint is over a random set of variables with random signs on the variables. $\#\text{constraints} \gg \#\text{variables}$.
- If $1-o(1)$ fraction of constraints can be satisfied (YES), algorithm accepts.
- The algorithm rejects with probability $1-o(1)$ [since with this probability only $(1+o(1))(k+1)/2^k$ fraction of constraints can be satisfied (NO)].

Tulsiani: Random kCSP has a Lasserre integrality gap for $\Omega(n)$ rounds.