Cuspidality and Hecke algebras for Langlands parameters

Maarten Solleveld
Universiteit Nijmegen

joint with Anne-Marie Aubert and Ahmed Moussaoui

12 April 2016
Some aspects of the local Langlands program

<table>
<thead>
<tr>
<th>p-adic side</th>
<th>Galois side</th>
</tr>
</thead>
<tbody>
<tr>
<td>reductive p-adic group</td>
<td>Weil–Deligne group</td>
</tr>
<tr>
<td>irreducible admissible reps</td>
<td>enhanced L-parameters</td>
</tr>
<tr>
<td>supercuspidal reps</td>
<td>?</td>
</tr>
<tr>
<td>Bernstein components</td>
<td>?</td>
</tr>
<tr>
<td>affine Hecke algebras</td>
<td>?</td>
</tr>
</tbody>
</table>
Some aspects of the local Langlands program

<table>
<thead>
<tr>
<th>p-adic side</th>
<th>Galois side</th>
</tr>
</thead>
<tbody>
<tr>
<td>reductive p-adic group</td>
<td>Weil–Deligne group</td>
</tr>
<tr>
<td>irreducible admissible reps</td>
<td>enhanced L-parameters</td>
</tr>
<tr>
<td>supercuspidal reps</td>
<td>?</td>
</tr>
<tr>
<td>Bernstein components</td>
<td>?</td>
</tr>
<tr>
<td>affine Hecke algebras</td>
<td>?</td>
</tr>
</tbody>
</table>

Goal of talk

Define all this on the Galois side, so that it matches via the local Langlands correspondence
enhanced Langlands parameters

Notations

F: non-archimedean local field
$G = \mathcal{G}(F)$: connected reductive group over F
$G^\vee = \mathcal{G}^\vee(\mathbb{C})$: complex dual group
$W_F \subset \text{Gal}(\overline{F}/F)$: Weil group of F

Assumption: G inner twist of F-split group G^*
enhanced Langlands parameters

Notations

- F: non-archimedean local field
- $G = G(F)$: connected reductive group over F
- $G^\vee = G^\vee(\mathbb{C})$: complex dual group
- $W_F \subset \text{Gal}(\overline{F}/F)$: Weil group of F
- Assumption: G inner twist of F-split group G^*

Definition

A Langlands parameter for G^\vee is an "admissible" homomorphism

$$\phi : W_F \times SL_2(\mathbb{C}) \rightarrow G^\vee$$

G^\vee_{sc}: simply connected cover of G^\vee_{der}

$S_\phi = \pi_0(Z_{G^\vee_{sc}}(\phi))$

An enhancement of ϕ is an irrep ρ of S_{ϕ}

$\Phi_e(G^\vee) = \{\text{enhanced } L\text{-parameters } (\phi, \rho)\} / G^\vee$-conjugation
Local Langlands Correspondence

Definition

$(\phi, \rho) \in \Phi_e(G^\vee)$ is relevant for G if $\rho|_{Z(G_{sc}^\vee)}$ is the Kottwitz parameter of G as an inner twist of a split group G^*

Notation: $\Phi_e(G) \subset \Phi_e(G^\vee)$
Local Langlands Correspondence

Definition

\((\phi, \rho) \in \Phi_e(G^\vee)\) is relevant for \(G\) if \(\rho|_{Z(G^\vee_{sc})}\) is the Kottwitz parameter of \(G\) as an inner twist of a split group \(G^*\)

Notation: \(\Phi_e(G) \subset \Phi_e(G^\vee)\)

Conjecture (Langlands, Borel, Vogan...)

There exists a bijection

\[
\irr(G) \leftrightarrow \Phi_e(G^\vee)
\]

which satisfies many nice properties, e.g.

\(\pi \in \irr(G)\) is essentially square-integrable (i.e. \(\pi|_{G_{der}}\) is square-integrable) if and only if \(\phi_\pi\) is discrete (i.e. not a \(L\)-parameter for any proper Levi subgroup of \(G\))
Cuspidality for L-parameters

Notations

(ϕ, ρ) enhanced L-parameter for G^\vee

$C_\phi = Z_{G_{sc}^\vee}(\phi(W_F))$: complex reductive group, possibly disconnected

$u_\phi = \phi(1, \frac{1}{0} \frac{1}{1})$: unipotent element of C_ϕ°

Lemma (Kazhdan–Lusztig)

Natural isomorphism $S_\phi = \pi_0(Z_{G_{sc}^\vee}(\phi(W_F \times SL_2(\mathbb{C})))) \to \pi_0(Z_{C_\phi}(u_\phi))$
Cuspidality for L-parameters

Notations

(ϕ, ρ) enhanced L-parameter for G^\vee

$C_\phi = Z_{G_{sc}}(\phi(W_F))$: complex reductive group, possibly disconnected

$u_\phi = \phi(1, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix})$: unipotent element of C_ϕ

Lemma (Kazhdan–Lusztig)

Natural isomorphism $S_\phi = \pi_0(Z_{G_{sc}}(\phi(W_F \times SL_2(\mathbb{C})))) \rightarrow \pi_0(Z_{C_\phi}(u_\phi))$

Definition

$(\phi, \rho) \in \Phi_e(G^\vee)$ is cuspidal if:

- ϕ is discrete;
- (u_ϕ, ρ) is a cuspidal pair for C_ϕ.

i.e. $\rho \in \text{Irr}(\pi_0(Z_{C_\phi}(u_\phi)))$ and (u_ϕ, ρ) cannot be obtained from a proper Levi subgroup of C_ϕ via a certain induction procedure

Notation: $\Phi_{\text{cusp}}(G^\vee) \subset \Phi_e(G^\vee)$
Cuspidal L-parameters for $GL_n(F)$

By classification:

(u, ρ) is a cuspidal pair for $GL_n(\mathbb{C})$ with $\rho|_{Z(SL_n(\mathbb{C}))} = 1$
$\iff n = 1, u = 1$ and $\rho = 1$

Lemma

$(\phi, \rho) \in \Phi_e(GL_n(F))$ is cuspidal \iff

$\phi|_{SL_2(\mathbb{C})} = 1, \rho = 1$ and $\phi|_{W_F}$ is a n-dim irreducible rep
Cuspidal L-parameters for $GL_n(F)$

By classification:

(u, ρ) is a cuspidal pair for $GL_n(\mathbb{C})$ with $\rho|_{Z(SL_n(\mathbb{C}))} = 1$

$\iff n = 1, u = 1$ and $\rho = 1$

Lemma

$(\phi, \rho) \in \Phi_e(GL_n(F))$ is cuspidal \iff

$\phi|_{SL_2(\mathbb{C})} = 1, \rho = 1$ and $\phi|_{WF}$ is a n-dim irreducible rep

Proof

\iff By the irreducibility, ϕ is discrete and $Z_{G_{sc}^\vee}(\phi(W_F)) = Z(G_{sc}^\vee)$.

The pair $(u = 1, \rho = 1)$ is cuspidal for $Z(G_{sc}^\vee) = Z(SL_n(\mathbb{C}))$.
Cuspidal L-parameters for $GL_n(F)$

By classification:

(u, ρ) is a cuspidal pair for $GL_n(\mathbb{C})$ with $\rho|_{Z(SL_n(\mathbb{C}))} = 1$

$\iff n = 1, u = 1 \text{ and } \rho = 1$

Lemma

$(\phi, \rho) \in \Phi_e(GL_n(F))$ is cuspidal \iff

$\phi|_{SL_2(\mathbb{C})} = 1, \rho = 1 \text{ and } \phi|_{W_F}$ is a n-dim irreducible rep

Proof

\iff By the irreducibility, ϕ is discrete and $Z_{G_{\text{sc}}}(\phi(W_F)) = Z(G_{\text{sc}}^{\vee})$. The pair $(u = 1, \rho = 1)$ is cuspidal for $Z(G_{\text{sc}}^{\vee}) = Z(SL_n(\mathbb{C}))$

$\Rightarrow \rho = 1$ because $G = GL_n(F)$

1. Since ϕ is discrete, it is a n-dim irreducible rep of $W_F \times SL_2(\mathbb{C})$
2. $\mathbb{C}^n = V_1 \otimes V_2$ with $V_1 \in \text{Irr}(W_F)$ and $V_2 \in \text{Irr}(SL_2(\mathbb{C}))$
3. Cuspidality forces $u_\phi = 1$, hence V_2 is the trivial $SL_2(\mathbb{C})$-rep
4. $\mathbb{C}^n = V_1 \in \text{Irr}(W_F)$
Theorem (Bernstein, 1984)

Let $\pi \in \text{Irr}(G) = \{\text{irreducible smooth } G\text{-reps over } \mathbb{C}\}$

- There exist a parabolic subgroup $P = L \ltimes U$ of G and a $\sigma \in \text{Irr}_{\text{cusp}}(L)$ such that π is a subquotient of the normalized parabolic induction $I^G_P(\sigma)$

- π determines the pair (L, σ) uniquely up to G-conjugation

Definition

The cuspidal support map for G is

$$Sc : \text{Irr}(G) \rightarrow \bigsqcup_{\text{Levi } L} \{L\} \times \text{Irr}_{\text{cusp}}(L)/G\text{-conjugation}$$
Cuspidal support of representations

Theorem (Bernstein, 1984)

Let \(\pi \in \text{Irr}(G) = \{ \text{irreducible smooth } G\text{-reps over } \mathbb{C} \} \)

- There exist a parabolic subgroup \(P = L \ltimes U \) of \(G \) and a \(\sigma \in \text{Irr}_{\text{cusp}}(L) \) such that \(\pi \) is a subquotient of the normalized parabolic induction \(I^G_P(\sigma) \)
- \(\pi \) determines the pair \((L, \sigma) \) uniquely up to \(G \)-conjugation

Alternative presentation of the cuspidal support map

\(\mathcal{L}e\nu(G) \): representatives for the conjugacy classes of Levi subgroups of \(G \)
\[W(G, L) = N_G(L)/L \]

\[Sc : \text{Irr}(G) \to \bigsqcup_{L \in \mathcal{L}e\nu(G)} \{ L \} \times (\text{Irr}_{\text{cusp}}(L)/W(G, L)) \]
Cuspidal support of enhanced L-parameters

(ϕ, ρ) enhanced L-parameter for G

Definition

The cuspidal support $S_{c}(\phi, \rho)$ is the G^{\vee}-conjugacy class of $(L^{\vee}, \psi, \epsilon)$, where:

1. L is a Levi subgroup of G
2. (ψ, ϵ) is a cuspidal L-parameter for L
Cuspidal support of enhanced L-parameters

\((\phi, \rho)\) enhanced L-parameter for \(G\)

Definition

The cuspidal support \(\text{Sc}(\phi, \rho)\) is the \(G^\vee\)-conjugacy class of \((L^\vee, \psi, \epsilon)\), where:

1. \(L\) is a Levi subgroup of \(G\)
2. \((\psi, \epsilon)\) is a cuspidal L-parameter for \(L\)
3. \(\psi = \phi\) on the inertia group \(I_F \subset \text{Gal}(\overline{F}/F)\)
4. \(\psi(\text{Frob}_F, \begin{pmatrix} q_F^{1/2} & 0 \\ 0 & q_F^{-1/2} \end{pmatrix}) = \phi(\text{Frob}_F, \begin{pmatrix} q_F^{1/2} & 0 \\ 0 & q_F^{-1/2} \end{pmatrix})\)

- (3) and (4) say that \(\text{Sc}\) preserves infinitesimal characters
Cuspidal support of enhanced L-parameters

(ϕ, ρ) enhanced L-parameter for G

Definition

The cuspidal support $S\text{c}(\phi, \rho)$ is the G^\vee-conjugacy class of (L^\vee, ψ, ϵ), where:

1. L is a Levi subgroup of G
2. (ψ, ϵ) is a cuspidal L-parameter for L
3. $\psi = \phi$ on the inertia group $I_F \subset \text{Gal}(\overline{F}/F)$
4. $\psi(Frob_F, \begin{pmatrix} q_F^{1/2} & 0 \\ 0 & q_F^{-1/2} \end{pmatrix}) = \phi(Frob_F, \begin{pmatrix} q_F^{1/2} & 0 \\ 0 & q_F^{-1/2} \end{pmatrix})$
5. $(C_\phi \cap L^\vee_{sc}, u_\psi, \epsilon)$ is the cuspidal support of (u_ϕ, ρ), for the group $C_\phi = Z_{G^\vee_{sc}}(\phi(W_F))$

- (3) and (4) say that $S\text{c}$ preserves infinitesimal characters
- If $(\phi, \rho) \in \Phi_{\text{cusp}}(G)$, then by (5): $S\text{c}(\phi, \rho) = (G^\vee, \phi, \rho)$
Examples of the cuspidal support map

\[G = GL_{5m}(F) \]

\(\phi \in \Phi(G), \rho = 1 \)

Suppose \(\phi = \phi_1 \otimes (R_2 \oplus R_2 \oplus R_1) \)

with \(\phi_1 \in \text{Irr}(W_F) \) and \(R_i = i\)-dim irrep of \(SL_2(\mathbb{C}) \)

- \(L^\vee = GL_m(\mathbb{C})^5 \)
Examples of the cuspidal support map

\[G = GL_{5m}(F) \]

\[\phi \in \Phi(G), \rho = 1 \]

Suppose \(\phi = \phi_1 \otimes (R_2 \oplus R_2 \oplus R_1) \)

with \(\phi_1 \in \text{Irr}(W_F) \) and \(R_i = i\)-dim irrep of \(SL_2(\mathbb{C}) \)

- \(L^\vee = GL_m(\mathbb{C})^5 \)
- for \(w \in I_F, x \in SL_2(\mathbb{C}) : \psi(w, x) = \phi_1(w) \otimes I_5 = \phi(w) \)
- \(\psi(\text{Frob}_F) = \phi(\text{Frob}_F) \otimes (q_F^{1/2}, q_F^{-1/2}, q_F^{1/2}, q_F^{-1/2}, 1) \)

Then \(Sc(\phi, \rho) = (L^\vee, \psi, \epsilon = 1) \)
Examples of the cuspidal support map

\[G = GL_{5m}(F) \]

\[\phi \in \Phi(G), \rho = 1 \]

Suppose \(\phi = \phi_1 \otimes (R_2 \oplus R_2 \oplus R_1) \)

with \(\phi_1 \in \text{Irr}(W_F) \) and \(R_i = i\text{-dim irrep of } SL_2(\mathbb{C}) \)

- \(L^\vee = GL_m(\mathbb{C})^5 \)
- for \(w \in I_F, x \in SL_2(\mathbb{C}) : \psi(w, x) = \phi_1(w) \otimes l_5 = \phi(w) \)
- \(\psi(\text{Frob}_F) = \phi(\text{Frob}_F) \otimes (q_F^{1/2}, q_F^{-1/2}, q_F^{1/2}, q_F^{-1/2}, 1) \)

Then \(Sc(\phi, \rho) = (L^\vee, \psi, \epsilon = 1) \)

- This works also for \(GL_n(F) \)
- It fits with the Zelevinsky classification of \(\text{Irr}(GL_n(F)) \)
Examples of the cuspidal support map

\[G = G_2(F) \]

\[\phi|_{w_F} = 1, \ u_\phi = \text{subregular unipotent} \]
\[\rho \in \text{Irr}(\pi_0(Z_{G_2(C)}(u_\phi))) \cong \text{Irr}(S_3) \]
- if \(\rho = \text{sign} \), then \((\phi, \rho) \in \Phi_e(G) \) is cuspidal
Examples of the cuspidal support map

\[G = G_2(F) \]

\[\phi|_{w_F} = 1, \ u_\phi = \text{subregular unipotent} \]

\[\rho \in \text{Irr}(\pi_0(Z_{G_2(C)}(u_\phi))) \cong \text{Irr}(S_3) \]

- if \(\rho = \text{sign} \), then \((\phi, \rho) \in \Phi_e(G) \) is cuspidal
- if \(\rho \neq \text{sign} \), then \(Sc(\phi, \rho) = (T^\vee, \psi, 1) \),
 where \(T \) is a maximal split torus of \(G \) and

\[\psi(\text{Frob}_F^n w, x) = \phi(1, \begin{pmatrix} q_F^{n/2} & 0 \\ 0 & q_F^{-n/2} \end{pmatrix}) \] for \(w \in I_F \)

The cuspidal support really depends on the enhancements of L-parameters.
Comparison of cuspidal support maps

For L a Levi subgroup of G

$W(G, L) = N_G(L)/L$ is isomorphic with $N_{G^\vee}(L^\vee)/L^\vee$

Provides an action of $W(G, L)$ on $\Phi_{\text{cusp}}(L)$
Comparison of cuspidal support maps

For L a Levi subgroup of G

$$W(G, L) = N_G(L)/L \text{ is isomorphic with } N_{G^\vee}(L^\vee)/L^\vee$$

Provides an action of $W(G, L)$ on $\Phi_{\text{cusp}}(L)$

Conjecture

Let G be a connected reductive p-adic group. The local Langlands correspondence makes following diagram commute

\[
\begin{array}{ccc}
\Phi_e(G) & \xleftarrow{\text{LLC}} & \text{Irr}(G) \\
\text{Sc} & & \text{Sc} \\
\bigsqcup_{L \in \text{Lev}(G)} \Phi_{\text{cusp}}(L)/W(G, L) & \xleftarrow{\text{LLC}} & \bigsqcup_{L \in \text{Lev}(G)} \text{Irr}_{\text{cusp}}(L)/W(G, L)
\end{array}
\]
Bernstein components for representations

\(X_{nr}(G) \): group of unramified characters \(G \to \mathbb{C}^\times \)

Definition

Let \(\sigma \in \text{Irr}_{\text{cusp}}(L) \)

\(s_L = (L, X_{nr}(L) \otimes \sigma) \subset \{ L \} \times \text{Irr}_{\text{cusp}}(L) \)

\(s = [L, \sigma]_G = G\text{-}conjugacy\ class\ of\ s_L \)

\(s \) is an inertial equivalence class for \(G \)

\(\Omega(G) \): set of such classes

\(\text{Irr}(G)^s = Sc^{-1}(s_L) \), a Bernstein component of \(\text{Irr}(G) \)
 Bernstein components for representations

$X_{nr}(G)$: group of unramified characters $G \rightarrow \mathbb{C}^\times$

Definition

Let $\sigma \in \text{Irr}_{\text{cusp}}(L)$

$s_L = (L, X_{nr}(L) \otimes \sigma) \subset \{L\} \times \text{Irr}_{\text{cusp}}(L)$

$s = [L, \sigma]_G = G$-conjugacy class of s_L

s is an inertial equivalence class for G

$\Omega(G)$: set of such classes

$\text{Irr}(G)^s = Sc^{-1}(s_L)$, a Bernstein component of $\text{Irr}(G)$

Theorem (Bernstein, 1984)

$\text{Irr}(G) = \bigsqcup_{s \in \Omega(G)} \text{Irr}(G)^s$

$\text{Rep}(G) = \prod_{s \in \Omega(G)} \text{Rep}(G)^s$
Bernstein components for L-parameters

G inner twist, so $\chi_{nr}(G) \cong Z(G^\vee)^\circ$

Definition

Let $(\phi, \rho) \in \Phi_{\text{cusp}}(L^\vee)$

$s^\vee_L = (L^\vee, Z(L^\vee)^\circ \phi, \rho) \subset \{L^\vee\} \times \Phi_{\text{cusp}}(L^\vee)$

$s^\vee = [L^\vee, \phi, \rho]^G = G^\vee$-conjugacy class of s^\vee_L

s^\vee is an inertial equivalence class for $\Phi_e(G^\vee)$
Bernstein components for L-parameters

G inner twist, so $X_{nr}(G) \cong Z(G^\vee)^\circ$

Definition

Let $(\phi, \rho) \in \Phi_{\text{cusp}}(L^\vee)$

$s^\vee_L = (L^\vee, Z(L^\vee)^\circ \phi, \rho) \subset \{L^\vee\} \times \Phi_{\text{cusp}}(L^\vee)$

$s^\vee = [L^\vee, \phi, \rho]_{G^\vee} = G^\vee$-conjugacy class of s^\vee_L

s^\vee is an inertial equivalence class for $\Phi_e(G^\vee)$

$\Omega(G^\vee)$: set of such classes

$\Phi_e(G^\vee)^{s^\vee} = Sc^{-1}(s^\vee_L)$, a Bernstein component of $\Phi_e(G^\vee)$

Lemma

Any Bernstein component of $\Phi_e(G^\vee)$ is relevant for a unique inner twist of G^*

$\Phi_e(G^\vee) = \bigcup \bigcup \Phi_e(G^\vee)^{s^\vee}$

inner twists G of G^* G-relevant $s^\vee \in \Omega(G^\vee)$
Example

Suppose:

\(L^\vee = \) maximal torus of \(G^\vee \)
\(\phi_1(I_F \times SL_2(\mathbb{C})) = 1, \phi_1(Frob_F) \in L^\vee \)
\(s_L^\vee = (L^\vee, \phi_1, \text{triv}_{S_{\phi_1}}) \)
Example

Suppose:

\[L^\vee = \text{maximal torus of } G^\vee \]
\[\phi_1(I_F \times SL_2(\mathbb{C})) = 1, \phi_1(\text{Frob}_F) \in L^\vee \]
\[s_L^\vee = (L^\vee, \phi_1, \text{triv}_{s\phi_1}) \]

Then:

\[s^\vee \] is relevant for the split form of \(G \)
\[\Phi_e(G^\vee)^{s^\vee} = \{ (\phi, \rho) \in \Phi_e(G^\vee) : \phi(I_F) = 1, \rho \text{ appears in } H_*(B^\phi) \} \]
\[B^\phi = \text{variety of Borel subgroups of } G^\vee \text{ which contain the image of } \phi \]
Conjecture

Let G be a connected reductive p-adic group.

The local Langlands correspondence makes following diagram commute

\[
\begin{array}{ccc}
\Phi_e(G) & \stackrel{LLC}{\leftrightarrow} & \text{Irr}(G) \\
\downarrow \text{Sc} & & \downarrow \text{Sc} \\
\bigsqcup_{L \in \mathcal{L}ev(G)} \Phi_{\text{cusp}}(L)/W(G, L) & \stackrel{\text{LLC}_{\text{cusp}}}{\leftrightarrow} & \bigsqcup_{L \in \mathcal{L}ev(G)} \text{Irr}_{\text{cusp}}(L)/W(G, L)
\end{array}
\]

If this holds and LLC_{cusp} is compatible with unramified twists, then LLC induces a bijection between Bernstein components.

Known for:
- inner twists of $\text{GL}_n(F)$ and $\text{SL}_n(F)$ (ABPS)
- $\text{Sp}_{2n}(F)$ and $\text{SO}_n(F)$ (Moussaoui)
- principal series representations of split groups (ABPS)
- unipotent representations of adjoint groups (Lusztig)
Conjecture

Let G be a connected reductive p-adic group. The local Langlands correspondence makes the following diagram commute:

\[
\begin{array}{ccc}
\Phi_e(G) & \xleftarrow{LLC} & \text{Irr}(G) \\
\downarrow Sc & & \downarrow Sc \\
\bigsqcup_{L \in \mathcal{L}_{\text{ev}}(G)} \Phi_{\text{cusp}}(L)/W(G, L) & \xleftarrow{LLC_{\text{cusp}}} & \bigsqcup_{L \in \mathcal{L}_{\text{ev}}(G)} \text{Irr}_{\text{cusp}}(L)/W(G, L)
\end{array}
\]

If this holds and LLC_{cusp} is compatible with unramified twists, then LLC induces a bijection between Bernstein components.

Known for:

- inner twists of $GL_n(F)$ and $SL_n(F)$ (ABPS)
- $Sp_{2n}(F)$ and $SO_n(F)$ (Moussaoui)
- principal series representations of split groups (ABPS)
- unipotent representations of adjoint groups (Lusztig)
Hecke algebras for Bernstein blocks of representations

Example

If G is F-split and I is an Iwahori subgroup, then

- $\mathcal{H}(G, I) = C_c^\infty(I \backslash G/I)$ is the affine Hecke algebra associated to the root datum of G^\vee and the parameter q_F.
- $\text{Mod}(\mathcal{H}(G, I))$ is Morita equivalent to $\text{Rep}(G)[T,1]^G$.

Conjecture

For every inertial equivalence class s for G there exists a slight generalization H_s of an affine Hecke algebra, such that $\text{Rep}(G)[T,1]^G \cong \text{Mod}(H_s)$.

There is a bijection $\text{Irr}(G)[T,1]^G \leftrightarrow \text{Irr}(H_s)$.
Hecke algebras for Bernstein blocks of representations

Example

If G is F-split and I is an Iwahori subgroup, then

- $\mathcal{H}(G, I) = C_c^\infty(I \backslash G/I)$ is the affine Hecke algebra associated to the root datum of G^\vee and the parameter q_F
- $\text{Mod}(\mathcal{H}(G, I))$ is Morita equivalent to $\text{Rep}(G)^{[T, 1]}_G$

Conjecture

For every inertial equivalence class s for G there exists a slight generalization \mathcal{H}^s of an affine Hecke algebra, such that

$\text{Rep}(G)^s \cong \text{Mod}(\mathcal{H}^s)$.

There is a bijection $\text{Irr}(G)^s \longleftrightarrow \text{Irr}(\mathcal{H}^s)$.
Hecke algebras for Bernstein components of L-parameters

Data from a Bernstein component $\Phi_e(G^\vee)^{\mathfrak{s}^\vee}$

- $\mathfrak{s}_L^\vee = (L^\vee, Z(L^\vee) \circ \phi, \rho)$
- torus $T_{\mathfrak{s}^\vee} := (Z(L^\vee) \circ \phi, \rho) \subset \Phi_{\text{cusp}}(L)$
- complex reductive group $Z_{G_{sc}^\vee}(\phi(1))$
- finite group $\mathcal{W}_{\mathfrak{s}^\vee} = \text{Stab}_{\mathcal{W}(G^\vee, L^\vee)}(\mathfrak{s}_L^\vee)$
Data from a Bernstein component $\Phi_e(G^\vee)^{\mathfrak{s}^\vee}$

- $\mathfrak{s}_L^\vee = (L^\vee, Z(L^\vee)^\phi, \rho)$
- torus $T_{\mathfrak{s}^\vee} := (Z(L^\vee)^\phi, \rho) \subset \Phi_{\text{cusp}}(L)$
- complex reductive group $Z_{G_{\mathfrak{s}^c}^\vee}((\phi(\mathbf{1}_F)))$
- finite group $W_{\mathfrak{s}^\vee} = \text{Stab}_{W(G^\vee, L^\vee)}(\mathfrak{s}_L^\vee)$

Example

$L^\vee = G^\vee, \mathfrak{s}^\vee = \mathfrak{s}_L^\vee$ is cuspidal
algebra: $\mathcal{O}(T_{\mathfrak{s}^\vee})$

Example

$L^\vee = \text{maximal torus}, u_\phi = 1, W_{\mathfrak{s}^\vee} = W(G^\vee, L^\vee)$
algebra: $\mathcal{H}(T_{\mathfrak{s}^\vee}, W_{\mathfrak{s}^\vee}, \mathfrak{v})$, the affine Hecke algebra for the root datum of (G^\vee, L^\vee) and the single parameter $q_F = \mathfrak{v}^2$
Theorem

Canonical associated to s^\vee is an algebra $\mathcal{H}(T_{s^\vee}, W_{s^\vee}, v)$ such that:

- $\mathcal{H}(T_{s^\vee}, W_{s^\vee}, v)$ is an extension of an affine Hecke algebra by a finite dimensional algebra
- For every $v \in \mathbb{R}_{>0}$ there is a canonical bijection

$$\Phi_e(G^\vee)^{s^\vee} \longleftrightarrow \text{Irr}(\mathcal{H}(T_{s^\vee}, W_{s^\vee}, v)/(v - v))$$
Theorem

Canonically associated to s^\vee is an algebra $\mathcal{H}(T_{s^\vee}, W_{s^\vee}, v)$ such that:

- $\mathcal{H}(T_{s^\vee}, W_{s^\vee}, v)$ is an extension of an affine Hecke algebra by a finite dimensional algebra
- For every $\nu \in \mathbb{R}_{>0}$ there is a canonical bijection

$$\Phi_e(G^{\vee})^{s^\vee} \longleftrightarrow \text{Irr}(\mathcal{H}(T_{s^\vee}, W_{s^\vee}, v)/(\nu - v))$$

- $\text{Mod } \mathcal{H}(T_{s^\vee}, W_{s^\vee}, v)$ provides a categorification of $\Phi_e(G^{\vee})^{s^\vee}$
- The module category depends only on $Z_{G_{sc}}(\phi(I_F))$ and some cuspidal data. This explains many equivalences between different Bernstein blocks
- The Galois side of the LLC can be phrased entirely in terms of cuspidal L-parameters and the groups W_{s^\vee}
This helps to reduce the proof of the LLC to the cuspidal case.
Specialization at $\mathbf{v} = q_F^{1/2}$

\[
\begin{align*}
\text{Rep}(G)^s & \xrightarrow{J^G_L} \text{Rep}(L)^{s_L} \\
\text{Mod}\left(\mathcal{H}(T_{s^\vee}, W_{s^\vee}, \mathbf{v})/(\mathbf{v} - q_F^{1/2})\right) & \xrightarrow{\text{Res}_{\mathcal{O}(T_{s^\vee})}} \text{Mod}\left(\mathcal{O}(T_{s^\vee})\right)
\end{align*}
\]
Specialization at $\mathbf{v} = q_F^{1/2}$

$$\begin{array}{c}
\text{Rep}(G)^s \xrightarrow{J_L^G} \text{Rep}(L)^{s_L} \\
\text{Mod}(\mathcal{H}(T_5^\vee, W_5^\vee, \mathbf{v})/(\mathbf{v} - q_F^{1/2})) \xrightarrow{\text{Res}_{\mathcal{O}(T_5^\vee)}} \text{Mod}(\mathcal{O}(T_5^\vee))
\end{array}$$

Specialization at $\mathbf{v} = 1$

$$\begin{array}{c}
\text{Irr}(G)^s \xrightarrow{\text{Sc}} \text{Irr}_{\text{cusp}}(L)^{s_L}/W_5 \\
\Phi_e(G)^{s^\vee} \xrightarrow{\text{Sc}} \Phi_{\text{cusp}}(L)^{s_L^\vee}/W_5^{\vee} \\
\text{Irr}(\mathcal{O}(T_5^\vee) \rtimes \mathbb{C}[W_5^\vee, t_5^\vee]) \rightarrow T_5^\vee/W_5^{\vee}
\end{array}$$
Generalizations of the Springer correspondence

\[\text{Unip}_e(\mathcal{H}) = \{(u, \rho) : u \in \mathcal{H} \text{ unipotent}, \rho \in \text{Irr}(\pi_0(Z_{\mathcal{H}}(u)))\}/\mathcal{H}\text{-conjugacy} \]

\[\text{Unip}_{\text{cusp}}(\mathcal{H}) = \text{cuspidal part of } \text{Unip}_e(\mathcal{H}) \]
Generalizations of the Springer correspondence

\[
\text{Unip}_e(\mathcal{H}) = \{(u, \rho) : u \in \mathcal{H} \text{ unipotent}, \rho \in \text{Irr}(\pi_0(Z_H(u)))\} / \mathcal{H}\text{-conjugacy}
\]

\[
\text{Unip}_{\text{cusp}}(\mathcal{H}) = \text{cuspidal part of } \text{Unip}_e(\mathcal{H})
\]

Theorem (Lusztig, 1984)

1. There exists a unique cuspidal support map

 \[
 \text{Sc}_{H^\circ} : \text{Unip}_e(\mathcal{H}^\circ) \to \bigsqcup_{\text{Levi } \mathcal{L}} \{\mathcal{L}\} \times \text{Unip}_{\text{cusp}}(\mathcal{L}) / \mathcal{H}^\circ\text{-conjugacy}
 \]

 such that \((u, \rho)\) appears in some induction of \(\text{Sc}_{H^\circ}(u, \rho)\).
Generalizations of the Springer correspondence

\[\text{Unip}_e(\mathcal{H}) = \{(u, \rho) : u \in \mathcal{H} \text{ unipotent}, \rho \in \text{Irr}(\pi_0(Z_{\mathcal{H}}(u)))\}/\mathcal{H}\text{-conjugacy} \]

\[\text{Unip}_{\text{cusp}}(\mathcal{H}) = \text{cuspidal part of } \text{Unip}_e(\mathcal{H}) \]

Theorem (Lusztig, 1984)

1. There exists a unique cuspidal support map

 \[Sc_{\mathcal{H}^\circ} : \text{Unip}_e(\mathcal{H}^\circ) \to \bigcup_{\text{Levi } \mathcal{L}} \{\mathcal{L}\} \times \text{Unip}_{\text{cusp}}(\mathcal{L})/\mathcal{H}^\circ\text{-conjugacy} \]

 such that \((u, \rho)\) appears in some induction of \(Sc_{\mathcal{H}^\circ}(u, \rho)\).

2. Let \(t = (\mathcal{L}, \nu, \epsilon)\) be a cuspidal support for \(\mathcal{H}^\circ\).

 There exists a canonical bijection

 \[\Sigma_t : Sc_{\mathcal{H}^\circ}^{-1}(t) \to \text{Irr}(W(\mathcal{H}^\circ, \mathcal{L})), \]

 realized in the cohomology of a certain sheaf.
Generalizations of the Springer correspondence

Desired: Lusztig–Springer correspondence for disconnected complex reductive groups \(\mathcal{H} \)

Modifications

1. Cuspidal support \((\mathcal{L}, \nu, \epsilon)\) is replaced by a cuspidal quasi-support \(q\tau = (q\mathcal{L}, \nu, q\epsilon)\), where:
 - \(q\mathcal{L} \subset \mathcal{H}\) is quasi-Levi: \(q\mathcal{L} = Z_{\mathcal{H}}(Z(\mathcal{L})^\circ)\) for a Levi subgroup \(\mathcal{L} \subset \mathcal{H}^\circ\)
 - \(\nu \in q\mathcal{L}^\circ\) is unipotent
 - \(q\epsilon \in \text{Irr}(\pi_0(Z_{\mathcal{H}}(\nu)))\) such that \(q\epsilon|_{\pi_0(Z_{\mathcal{H}^\circ}(\nu))}\) is a sum of cuspidal reps
Generalizations of the Springer correspondence

Desired: Lusztig–Springer correspondence for disconnected complex reductive groups \mathcal{H}

Modifications

1. Cuspidal support $(\mathcal{L}, \nu, \epsilon)$ is replaced by a cuspidal quasi-support $q\mathcal{t} = (q\mathcal{L}, \nu, q\epsilon)$, where:
 - $q\mathcal{L} \subset \mathcal{H}$ is quasi-Levi: $q\mathcal{L} = Z_{\mathcal{H}}(Z(\mathcal{L})^\circ)$ for a Levi subgroup $\mathcal{L} \subset \mathcal{H}^\circ$
 - $\nu \in q\mathcal{L}^\circ$ is unipotent
 - $q\epsilon \in \text{Irr}(\pi_0(Z_{\mathcal{H}}(\nu)))$ such that $q\epsilon|_{\pi_0(Z_{\mathcal{H}}^\circ(\nu))}$ is a sum of cuspidal reps

2. $W(\mathcal{H}^\circ, \mathcal{L})$ is extended to $W(\mathcal{H}, q\mathcal{L}, q\epsilon) = N_{\mathcal{H}}(q\mathcal{L}, q\epsilon)/q\mathcal{L}$

3. $\text{Irr}(W(\mathcal{H}, \mathcal{L}))$ is replaced by $\text{Irr}(\mathbb{C}[W(\mathcal{H}, q\mathcal{L}, q\epsilon), \sharp_q\epsilon])$, where
 $\sharp_q\epsilon : (W(\mathcal{H}, q\mathcal{L}, q\epsilon)/W(\mathcal{H}^\circ, \mathcal{L}))^2 \to \mathbb{C}^\times$ is a 2-cocycle
Theorem (Generalization of the Lusztig–Springer correspondence)

Let \mathcal{H} be a complex reductive group, possibly disconnected.

1. There exists a canonical cuspidal support map

$$S_{c\mathcal{H}} : \text{Unip}_e(\mathcal{H}) \to \bigsqcup_{\text{quasi-Levi } \mathcal{L}} \{\mathcal{L}\} \times \text{Unip}_{\text{cusp}}(\mathcal{L})/\mathcal{H}\text{-conjugacy}$$

- $S_{c\mathcal{H}}$ is used in the cuspidal support map for enhanced L-parameters
Theorem (Generalization of the Lusztig–Springer correspondence)

Let \mathcal{H} be a complex reductive group, possibly disconnected.

1. There exists a canonical cuspidal support map

$$Sc_{\mathcal{H}} : \text{Unip}_e(\mathcal{H}) \to \bigsqcup_{\text{quasi-Levi } \mathcal{L}} \{\mathcal{L}\} \times \text{Unip}_{\text{cusp}}(\mathcal{L})/\mathcal{H}\text{-conjugacy}$$

2. Let $q_t = (q_\mathcal{L}, v, q_\epsilon)$ be a cuspidal quasi-support for \mathcal{H}. There exists a (almost canonical) bijection

$$\Sigma_{q_t} : Sc_{\mathcal{H}}^{-1}(q_t) \to \text{Irr}(\mathbb{C}[\mathcal{W}(\mathcal{H}, q_\mathcal{L}, q_\epsilon), \sharp q_\epsilon])$$

realized in the cohomology of a certain sheaf.

- Sc_{C_ϕ} is used in the cuspidal support map for enhanced L-parameters
- Sometimes the 2-cocycle $\sharp q_\epsilon$ is nontrivial. Used in $\mathcal{H}(T_s, W_s, v)$
Cuspidal support of enhanced L-parameters

\((\phi, \rho)\) enhanced L-parameter for \(G\)

Definition

The cuspidal support \(S_{c}(\phi, \rho)\) is the \(G^{\vee}\)-conjugacy class of \((L^{\vee}, \psi, \epsilon)\), where:

1. \(L\) is a Levi subgroup of \(G\)
2. \((\psi, \epsilon)\) is a cuspidal L-parameter for \(L\)
3. \(\psi = \phi\) on the inertia group \(I_{F} \subset \text{Gal}(\overline{F}/F)\)
4. \(\psi(\text{Frob}_{F}, \begin{pmatrix} q_{F}^{1/2} & 0 \\ 0 & q_{F}^{-1/2} \end{pmatrix}) = \phi(\text{Frob}_{F}, \begin{pmatrix} q_{F}^{1/2} & 0 \\ 0 & q_{F}^{-1/2} \end{pmatrix})\)
5. \((C_{\phi} \cap L_{sc}^{\vee}, u_{\psi}, \epsilon)\) is the cuspidal support of \((u_{\phi}, \rho)\), for the group \(C_{\phi} = Z_{G_{sc}^{\vee}}(\phi(W_{F}))\)
A Bernstein component \(\Phi_e(G^\vee)s^\vee \) consists of the enhanced L-parameters with the same cuspidal support, up to unramified twists

\[
\Phi_e(G^\vee) = \bigsqcup \bigsqcup \Phi_e(G^\vee)s^\vee
\]

inner twists \(G \) of \(G^* \) G-relevant \(s^\vee \in \Omega(G^\vee) \)

Can the local Langlands correspondence be categorified to \(\text{Rep}(G) \cong \bigsqcup \bigsqcup \text{Irr}(H(Ts^\vee, Ws^\vee, v))/ (v - v) \)?

Is there some sheaf with endomorphism algebra \(H(Ts^\vee, Ws^\vee, v) ? \)
Summary

- A Bernstein component \(\Phi_e(G^\vee) s^\vee \) consists of the enhanced L-parameters with the same cuspidal support, up to unramified twists

\[
\Phi_e(G^\vee) = \bigsqcup \bigsqcup \Phi_e(G^\vee) s^\vee
\]
inner twists \(G \) of \(G^* \) G-relevant \(s^\vee \in \Omega(G^\vee) \)

- To every \(s^\vee \) we can attach \(\mathcal{H}(T_s^\vee, W_s^\vee, v) \), which is almost an affine Hecke algebra.

- For every \(v \in \mathbb{R}_{>0} \)

\[
\Phi_e(G^\vee) = \bigsqcup \bigsqcup \text{Irr}(\mathcal{H}(T_s^\vee, W_s^\vee, v)/(v-v))
\]
inner twists \(G \) of \(G^* \) G-relevant \(s^\vee \in \Omega(G^\vee) \)
Summary

- A Bernstein component $\Phi_e(G^\vee)^{s^\vee}$ consists of the enhanced L-parameters with the same cuspidal support, up to unramified twists

 \[
 \Phi_e(G^\vee) = \bigsqcup \bigsqcup \Phi_e(G^\vee)^{s^\vee}
 \]
 inner twists G of G^* G-relevant $s^\vee \in \Omega(G^\vee)$

- To every s^\vee we can attach $\mathcal{H}(T_{s^\vee}, W_{s^\vee}, \nu)$, which is almost an affine Hecke algebra.

- For every $\nu \in \mathbb{R}_{>0}$

 \[
 \Phi_e(G^\vee) = \bigsqcup \bigsqcup \text{Irr}(\mathcal{H}(T_{s^\vee}, W_{s^\vee}, \nu)/(\nu - \nu))
 \]
 inner twists G of G^* G-relevant $s^\vee \in \Omega(G^\vee)$

- Can the local Langlands correspondence be categorified to

 \[
 \text{Rep}(G) \sim \bigsqcup \text{Irr}(\mathcal{H}(T_{s^\vee}, W_{s^\vee}, \nu))
 \]
 G-relevant $s^\vee \in \Omega(G^\vee)$

- Is there some sheaf with endomorphism algebra $\mathcal{H}(T_{s^\vee}, W_{s^\vee}, \nu)$?