Properties of rationality

k a field, X/k projective integral variety

We are interested in determining whether or not:

- X is rational
- X is stably rational
- X is unirational
- X is rationally connected (say $k = \mathbb{C}$).
(C. Voisin, Colliot-Thélène - Pirutka):

\(X/k \) is **universally CH\(_0\)-trivial** if \(\text{deg} : \text{CH}_0(X_L) \to \mathbb{Z} \) is an isomorphism \(\forall L/k \).

Examples: \(X \) smooth stably rational, does NOT necessarily hold if \(X \) is rationally connected.
(C. Voisin, Colliot-Thélène - Pirutka):

\(X/k \) is **universally \(CH_0 \)-trivial** if \(\deg : CH_0(X_L) \to \mathbb{Z} \) is an isomorphism \(\forall \) \(L/k \).

Examples: \(X \) smooth stably rational, does NOT necessarily hold if \(X \) is rationally connected.

Specialization method: Assume \(B/\mathbb{C} \) integral of finite type,

- \(\mathfrak{X} \to B \) flat, projective map, general fiber is smooth;
- for \(b_0 \in B(\mathbb{C}) \), the fiber \(Y = \mathfrak{X}_{b_0} \) has a resolution \(f : Z \to Y \), s.t. \(f \) is a universally \(CH_0 \)-trivial map (check on fibers); \(Z \) is NOT universally \(CH_0 \)-trivial (ex. \(BrZ \neq 0 \)).

Then: \(\mathfrak{X}_b \) is not stably rational for \(b \in B(\mathbb{C}) \) very general.
Computing Brauer group birationally

- Y/k integral, $H^i_{nr}(k(Y)/k)$ is

 $H^i_{nr}(k(Y)/k, \mathbb{Z}/2) = \bigcap_v \ker[H^i(k(Y), \mathbb{Z}/2) \xrightarrow{\partial_v} H^{i-1}(\kappa(v), \mathbb{Z}/2)];$

 if $i = 2$ and Y/\mathbb{C} is smooth projective
 $H^2_{nr}(\mathbb{C}(Y)/\mathbb{C}) = Br Y[2].$

- If $Y \to \mathbb{P}^2_{\mathbb{C}}$ is a fibration in quadrics of dimension 1 or 2, generic fiber $Q/K = \mathbb{C}(\mathbb{P}^2)$ is a quadric, then:

 - $H^2(K, \mathbb{Z}/2) \to H^2_{nr}(K(Q)/K)$ is surjective;

 - to construct $\alpha \in H^2_{nr}(\mathbb{C}(Y)/\mathbb{C})$, take $\alpha_0 \in H^2(K, \mathbb{Z}/2)$ and verify that it becomes unramified on $\mathbb{C}(Y)$ (use commutative diagrams with residues).

 (method by Colliot-Thélène - Ojanguren, also explains Artin-Mumford)
$Y \to \mathbb{P}^2_{\mathbb{C}}$,
generic fiber is $Q/K = \mathbb{C}(\mathbb{P}^2)$,
$Y \subset \mathbb{P}^2 \times \mathbb{P}^3$ is given by

$$yzs^2 + xzt^2 + xyu^2 + (x^2 + y^2 + z^2 - 2xy - 2xz - 2yz)v^2 = 0.$$

Put $F(x, y, z) = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz$.
The hypersurface with equation

\[(u^2 + uv + ts)x^2 + (-t^2 + u^2 - v^2 - s^2)xy + (t^2 + uv + ts)y^2 + (-t^2 + u^2 - v^2 - s^2)xz + (t^2 - 16tu - u^2 + v^2 + s^2)yz + (-3uv - 3ts + s^2)z^2.\]

is smooth and satisfies the surjectivity criterion.