Three points for discussion:

1. On halo OVI and the results of the TNG model
2. On the TNG50 simulation and its utility for studying outflows <-> internal galaxy structure
3. On new CGM simulations, small-scale structure, and overcoming the resolution issue
1. On halo OVI and the results of the TNG model

- TNG seems fully consistent with low-z OVI data... we’re done?
 - Nothing fancy: no NEQ, no small-scale...
- Matching obs. sample/selections is critical
 - How to interpret idealized tests, i.e. single cloud runs?
- Diversity (@ fixed M*,z,b) is high! Statistics needed...

DN, Kauffmann, Pillepich+ (2018)
$M_{\text{halo}} \sim 10^{12}$

$N_{\text{OVI}} \ [\text{log cm}^{-2}]$

$z = 0$
$M_\star \sim 10^{10.5} \, M_{\odot}$

$M_{\text{halo}} \sim 10^{12.0} \, M_{\odot}$
2. On the TNG50 simulation and its utility for studying outflows <-> internal galaxy structure

Dylan Nelson
Annalisa Pillepich
Volker Springel
Lars Hernquist
Ruediger Pakmor
Rainer Weinberger
Federico Marinacci
Shy Genel
Mark Vogelsberger
Paul Torrey
Jill Naiman

Incorporates (unchanged) the ‘TNG’ galaxy formation model:
1. Ideal MHD
2. New low-state AGN FB, pulsed directional kinetic ‘wind’
3. Revised galactic-scale wind FB (SH03 kinetic/decoupled)

• 15x mass resolution of TNG100, ~few hundred pc scales
• Push ‘effective’ feedback models to their limits
• What is the role of effective feedback models?
• Sub-grid inputs at \textit{injection}, not related to any obs. phase
 • E.g. η is a continuous function of $(M^*, z, r, v_{\text{cut}}, \text{phase})$
 • How to capture small-scale sim results?
• Despite model simplicity, outflows are complex
 • Multi-phase in (T, ρ, v, Z)
 • $v \sim$ few 100s km/s (stellar winds), > 1000 km/s (BHs)
3. On new CGM simulations, small-scale structure, and overcoming the resolution issue
3. On new CGM simulations, small-scale structure, and overcoming the resolution issue
$M_{\text{halo}} \sim 10^{12}$

$z \sim 2$