Possible Dark Matter Masses

<table>
<thead>
<tr>
<th>Mass</th>
<th>Excluded by gravitational lensing</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-21} eV</td>
<td>wavelength doesn’t fit in galaxies</td>
</tr>
<tr>
<td>μeV</td>
<td></td>
</tr>
<tr>
<td>meV</td>
<td></td>
</tr>
<tr>
<td>eV</td>
<td></td>
</tr>
<tr>
<td>MeV</td>
<td></td>
</tr>
<tr>
<td>GeV</td>
<td></td>
</tr>
<tr>
<td>TeV</td>
<td></td>
</tr>
<tr>
<td>M_{Planck}</td>
<td></td>
</tr>
<tr>
<td>M_{solar}</td>
<td></td>
</tr>
</tbody>
</table>

80 orders of magnitude
Possible Dark Matter Masses

<table>
<thead>
<tr>
<th>Possible Dark Matter Masses</th>
<th>80 orders of magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-21}eV</td>
<td>μeV meV eV</td>
</tr>
<tr>
<td>$1/\text{year}$</td>
<td>optical</td>
</tr>
<tr>
<td>MeV GeV TeV</td>
<td>M_{Planck} M_{\text{solar}}</td>
</tr>
<tr>
<td>bosonic / field</td>
<td>fermionic / particle</td>
</tr>
<tr>
<td>Axions</td>
<td>WIMPs</td>
</tr>
<tr>
<td>axion-like particles</td>
<td>thermal relics</td>
</tr>
</tbody>
</table>
Possible Dark Matter Masses

<table>
<thead>
<tr>
<th>Mass Range</th>
<th>Units</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-21} eV</td>
<td>meV</td>
<td>Eöt-Wash, MAGIS, CASPER, DAMIC, CRESST-III, Sabre, XENON100</td>
</tr>
<tr>
<td>1/year</td>
<td></td>
<td>NEWS-G, XENON10, XMASS, Gaia, SuperCDMS, PICO, XENON1T, Deap3600</td>
</tr>
<tr>
<td>μeV</td>
<td></td>
<td>DAMIC, COSINE, LUX, SENSEI, LBECA, PandaX, DarkSide-50</td>
</tr>
<tr>
<td>80 orders of magnitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{Planck}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{solar}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{astro}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bosonic / Field

<table>
<thead>
<tr>
<th>Bosonic / Field</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eöt-Wash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CASPER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMRadio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABRACADABRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAYSTAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fermionic / Particle

<table>
<thead>
<tr>
<th>Fermionic / Particle</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWS-G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRESST-III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAMIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENSEI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBECA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PandaX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DarkSide-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuperCDMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON1T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deap3600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF-He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColCen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENONnT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DarkSide-20k</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optical

<table>
<thead>
<tr>
<th>Optical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs/Al$_2$O$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen3/DARWIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DarkSide-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen3/DARWIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SuperCDMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICO</td>
<td></td>
<td>XENON1T</td>
</tr>
<tr>
<td>Deap3600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ColCen</td>
<td></td>
<td>XENONnT</td>
</tr>
<tr>
<td>XENON1T</td>
<td></td>
<td>LZ</td>
</tr>
<tr>
<td>DarkSide-20k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DarkSide-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON1T</td>
<td></td>
<td>LZ</td>
</tr>
<tr>
<td>Deap3600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Think Big

Identify promising dark matter candidates independently of constraints due to current technology or funding
WIMP Direct Detection 101

- coherent scattering
 \[\frac{\lambda_{\text{deBroglie}}}{2\pi} = \frac{\hbar}{p} = \frac{\hbar c}{mc^2 v/c} \approx \frac{197 \text{ MeV fm}}{100 \text{ GeV} \times 10^{-3}} \approx \text{fm} \approx r_{\text{nucleus}} \]

- rate prefers high-A (high-J) targets
 \[N = n_{\text{target}} \Phi \sigma_{\chi,N} A^2 \quad \text{or} \quad \propto \sigma_{\chi,N} J(J+1) \]

- recoil spectrum: falling exponential at low energies
 \[E_{r,\text{max}} \sim \frac{p_X^2}{2m_N} \sim \frac{(100 \text{ GeV}/c^2 \times 10^{-3}c)^2}{2 \times 100 \text{ GeV}/c^2} = 50 \text{ keV} \]
WIMP Detection: Status

Plot Cross Section versus WIMP mass

fill with your own prior

e.g. Z-mediation through a box, or Higgs-mediated, or Z-mediation at 10^{-10} abundance

Rafael F. Lang: Xe
WIMP Detection: Status

Best limits all from xenon experiments

Low masses: fight threshold

High masses: number density decreases as mass density is fixed
Thermal Relics & WIMPs

Simple nonrelativistic scattering

Experiments are probing expected WIMP parameter space

Pushing experiments to probe deeper, lighter, and heavier

Rafael F. Lang: Xe
Dual-Phase TPC: e.g. XENON1T

3D position information
S2 hit pattern: $\delta r < 2 \text{ cm}$
drift time: $\delta z < 500 \mu \text{m}$
The Secret of Success

Redundant event information: can fight detector artefacts
(collect ~2.5MB per event)
Self-Shielding in Xenon

Reduce background with $\exp(-\text{diameter}/\lambda_\gamma)$
ER/NR Discrimination

Corrected S2 bottom [PE] vs Corrected S1 [PE]

(a) ^{220}Rn calibration

keV_{ee}

β,γ

electronic recoils

β,γ

e^-
ER/NR Discrimination

Corrected S2 bottom [PE] vs Corrected S1 [PE]

- Electronic recoils
- Nuclear recoils

\(\text{keV}_{\text{nr}} \)

(b) \(^{241}\text{AmBe calibration} \)

Rafael F. Lang: Xe
Dark Matter Search

First science data, 34 live days:

- WIMPs, SI & SD!
- iDM and other EFT
- GeV DM
Ample Science from “Background”

First science data, 34 live days:

- leptophilic/axial-vector WIMPs, MeV DM
- Migdal & Bremsstrahlung
- inelastic scatter, miDM
- ALPs, dark photons, SuperWIMPs, solar axions, luminous DM, mirror DM
- sterile ν
- DEC on 124Xe

- WIMPs, SI & SD!
- iDM and other EFT
- GeV DM
Migdal Effect

Scatter inelastically

In Xenon: eject an Auger electron at higher energy at the expense of lower rate
Liquid TPCs

Technology of choice for WIMPs: monolithic, scalable, cheap, redundant event information
Excellent Data Taking & Stability

279 live days of dark matter data on tape:

Science Run 0 Science Run 1
XENON1T Science Run 1

recently unblinded

unsalted yesterday

public in weeks, not months
XENON1T with improved sensitivity soon
Rafael F. Lang: Xe

Upgrade: XENONnT

• Rapid upgrade:
 8t total
 6t active
 4t fiducial
 start 2019

• Re-use most sub-systems

• Xenon in hand, PMTs tested, fixing design
XENON1T Background Spectrum

overall, $2\nu 2\beta$ dominant
($t_{1/2} \sim 10^{21}$ years!)

^{222}Rn a technological challenge

some sensitivity at low energies to pp solar ν

Rafael F. Lang: Xe
Veto Dominant 222Rn Background

- map convection,
- match decay chain,
- veto 214Pb

210Pb: 22y

214Po: 164μs

214Bi: 20min

214Pb: 27min

218Po: 3min

220Rn in XENON100:

222Rn: 3.8d

XENON1T Simulation

Rafael F. Lang: Xe
Near Future

Scattering Cross Section in cm^2

- 10^{-42}
- 10^{-43}
- 10^{-44}
- 10^{-45}
- 10^{-46}
- 10^{-47}
- 10^{-48}
- 10^{-49}

WIMP Mass in GeV/c2

- 1
- 3
- 10
- 30
- 100
- 300
- 1000
- 3000
- 10000

XENONnT and LZ start 2019

PandaX, LUX, XENON1T 2017

ruled out

Rafael F. Lang: Xe
XENON1T Results

Results from 1 year with 1300kg should be coming anytime now

Another order of magnitude with XENONnT & LZ starting 2019

Rafael F. Lang: Xe
Neutrino-Nucleus Scattering

Simple scattering kinematics: degenerate in momentum

→ put on same plot

Rafael F. Lang: Xe
Direct Detection: Status

Scattering Cross Section in cm^2

WIMP Mass in GeV/c2

- 10^{-42}
- 10^{-43}
- 10^{-44}
- 10^{-45}
- 10^{-46}
- 10^{-47}
- 10^{-48}
- 10^{-49}
- 10^{-50}

- 10^1
- 10^3
- 10^6
- 10^{10}
- 10^{30}
- 10^{300}
- 10^{3000}
- 10^{30000}

Coherent Neutrino Signal

ruled out

PandaX, LUX, XENON1T 2017

x1000

neutrino floor far, far away

Rafael F. Lang: Xe
Direct Detection: Outlook

Scattering Cross Section in cm2

WIMP Mass in GeV/c2

ruled out

PandaX, LUX, XENON1T 2017

XENONnT, LZ

Coherent Neutrino Signal

neutrino floor far, far away

strong program to improve factor 100

Rafael F. Lang: Xe
Require Generation-3 Detectors

neutrino floor far, far away

strong program to improve factor 100

current program leaves a WIMP gap
Physics with 60t LXe

Dark Matter:
• spin-independent WIMPs
• spin-dependent WIMPs
 • EFT couplings and inelastic WIMPs
 • GeV and MeV WIMPs (“S2-only”)
 • Planck mass dark matter
 • Migdal & Bremsstrahlung searches
 • Annual modulation searches
 • Magnetic Inelastic WIMPs
 • inelastic scattering
 • axial-vector coupling
 • Mirror & luminous DM
 • Axion-like particles
• SuperWIMPs
• Dark photons

Neutrinos:
• solar pp neutrinos
• coherent neutrino-nucleus scattering
• 8B solar neutrinos
• galactic supernovae
 • neutrino oscillations
 • sterile neutrinos
• $2\nu\beta\beta$ decay of 136Xe
• $0\nu\beta\beta$ decay of 136Xe
 • double-EC on 124Xe

Other:
• solar axions
• fractionally charged particles

Rafael F. Lang: Xe
Not There Yet

Becoming sensitive to solar and supernova neutrinos

Signal from atmospheric neutrinos far, far away

Need Generation-3 experiments to cover WIMP space

Rafael F. Lang: Xe
Direct Detection at High Mass

Planck mass

WIMP mass [GeV]

cross-section [cm2]

10^{-36}

10^{-33}

10^{-30}

10^{-27}

10^{-24}

10^{-21}

Saturated Overburden Scattering

DAMA

XENON1T $\sigma_{M\text{IMP}}$

DARWIN $\sigma_{M\text{IMP}}$

XENON1T, WIMP 1-year

DARWIN, WIMP 10-year

XENON1T, WIMP 1-year flux limit

DARWIN, 10-year flux limit

10^{13}

10^{15}

10^{17}

10^{19}
Probing Planck Mass

Generation-3 experiment can do it. Neutrino experiments too.
Electron Scattering in Xenon

Detect even individual electrons liberated anywhere in 2000kg of Xenon:

Build dedicated detector to tackle backgrounds and probe Dark Matter
Backgrounds: Photoionization

Xenon light 175nm=7eV

- Photoionizes metals & impurities
Backgrounds: Extraction

Xenon light $175\text{nm}=7\text{eV}$
- Photoionizes metals & impurities
- Delayed extraction:

$$\text{max drift} \quad 0.3\text{ms}$$
Swiftly build dedicated, conventional xenon detector:

LBECA Reach

A.Bernstein, J.Xu, P.Sorensen, K.Ni, R.Essig, M.Fernandez-Serra, Rafael

heavy dark photon

![Graph showing heavy dark photon reach]

light dark photon

![Graph showing light dark photon reach]
Conclusions

Liquid Xe TPCs became versatile science machines

Very stimulating interactions between theory and experiment:
Time of creative ideas in direct detection
Rafael F. Lang: Xe