A classical example
Automorphic L-functions
Periods of motives
Adumbrating the proofs

Special values of automorphic L-functions

A. Raghuram

Indian Institute of Science Education and Research, Pune, India
IAS, Princeton, USA

April 26, 2018
Theorem (Shimura)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. There exists $u^{\pm}(\varphi) \in \mathbb{C}^*$ (the periods of φ) such that for any integer m with $1 \leq m \leq k - 1$, and any Dirichlet character χ we have

$$L_f(m, \varphi, \chi) \sim (2\pi i)^m \gamma(\chi) u^{\pm}(\varphi)$$

where $\chi(-1) = \pm (-1)^m$.

\sim means up to an element of the number field

$$\mathbb{Q}(\varphi, \chi) := \mathbb{Q}(a_n(\varphi), \text{values of } \chi).$$
A classical example
Automorphic L-functions
Periods of motives
Adumbrating the proofs

\textit{L-functions of modular forms}

\textbf{Theorem (Shimura)}

\textit{Let } $\varphi \in S_k(N, \omega)_{\text{prim}}$.

There exists $u^\pm(\varphi) \in \mathbb{C}^*$ (the periods of φ) such that for any integer m with $1 \leq m \leq k - 1$, and any Dirichlet character χ we have

$$L_f(m, \varphi, \chi) \sim (2\pi i)^m \gamma(\chi) u^\pm(\varphi)$$

\textit{where } $\chi(-1) = \pm(-1)^m$.

\sim means up to an element of the number field

$$\mathbb{Q}(\varphi, \chi) := \mathbb{Q}(a_n(\varphi), \text{values of } \chi).$$
L-functions of modular forms

Theorem (Shimura)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. There exists $u^\pm(\varphi) \in \mathbb{C}^*$ (the periods of φ) such that for any integer m with $1 \leq m \leq k - 1$, and any Dirichlet character χ we have

$$L_f(m, \varphi, \chi) \sim (2\pi i)^m \gamma(\chi) u^\pm(\varphi)$$

where $\chi(-1) = \pm (-1)^m$.

\sim means up to an element of the number field

$$\mathbb{Q}(\varphi, \chi) := \mathbb{Q}(a_n(\varphi), \text{values of } \chi).$$
Theorem (Shimura)

Let \(\varphi \in S_k(N, \omega)_{\text{prim}} \).

There exists \(u^{\pm}(\varphi) \in \mathbb{C}^* \) (the periods of \(\varphi \)) such that for any integer \(m \) with \(1 \leq m \leq k - 1 \), and any Dirichlet character \(\chi \) we have

\[
L_f(m, \varphi, \chi) \sim (2\pi i)^m \gamma(\chi) u^{\pm}(\varphi)
\]

where \(\chi(-1) = \pm (-1)^m \).

\(\sim \) means up to an element of the number field

\[
\mathbb{Q}(\varphi, \chi) := \mathbb{Q}(a_n(\varphi), \text{values of } \chi).
\]
Theorem (Shimura)

Let \(\varphi \in S_k(N, \omega)_{\text{prim}} \).

There exists \(u^\pm(\varphi) \in \mathbb{C}^* \) (the periods of \(\varphi \)) such that
for any integer \(m \) with \(1 \leq m \leq k - 1 \), and
any Dirichlet character \(\chi \) we have

\[
L_f(m, \varphi, \chi) \sim (2\pi i)^m \gamma(\chi) u^\pm(\varphi)
\]

where \(\chi(-1) = \pm (-1)^m \).

\(\sim \) means up to an element of the number field

\[
\mathbb{Q}(\varphi, \chi) := \mathbb{Q}(a_n(\varphi), \text{values of } \chi).
\]
Theorem (Shimura)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. There exists $u^\pm(\varphi) \in \mathbb{C}^*$ (the periods of φ) such that for any integer m with $1 \leq m \leq k - 1$, and any Dirichlet character χ we have

$$L_f(m, \varphi, \chi) \sim (2\pi i)^m \gamma(\chi) u^\pm(\varphi)$$

where $\chi(-1) = \pm (-1)^m$.

\sim means up to an element of the number field

$$\mathbb{Q}(\varphi, \chi) := \mathbb{Q}(a_n(\varphi), \text{values of } \chi).$$
Theorem (Shimura)

Let \(\varphi \in S_k(N, \omega)_{\text{prim}} \).

There exists \(u^\pm(\varphi) \in \mathbb{C}^\ast \) *(the periods of* \(\varphi \)) *such that for any integer* \(m \) *with* \(1 \leq m \leq k - 1 \), *and any Dirichlet character* \(\chi \) *we have*

\[
L_f(m, \varphi, \chi) \sim (2\pi i)^m \gamma(\chi) u^\pm(\varphi)
\]

where \(\chi(-1) = \pm(-1)^m \).

\(\sim \) *means up to an element of the number field*

\[
\mathbb{Q}(\varphi, \chi) := \mathbb{Q}(a_n(\varphi), \text{values of } \chi).
\]
Ratio of successive critical values

Corollary (to Shimura’s theorem)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. For any integer m with $1 \leq m \leq k - 2$, and any Dirichlet character χ we have

$$\frac{L_f(m, \varphi, \chi)}{L_f(m + 1, \varphi, \chi)} \sim (2\pi i)^{-1} \frac{u^\pm(\varphi)}{u^\mp(\varphi)}$$

Corollary (Restated...)

The quantity

$$\frac{1}{\Omega(\varphi)\chi(-1)(-1)^m} \frac{L(m, \varphi, \chi)}{L(m + 1, \varphi, \chi)}$$

is algebraic and $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$-equivariant.

A. Raghuram
Corollary (to Shimura’s theorem)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. For any integer m with $1 \leq m \leq k - 2$, and any Dirichlet character χ we have

$$\frac{L_f(m, \varphi, \chi)}{L_f(m + 1, \varphi, \chi)} \sim (2\pi i)^{-1} \frac{u^\pm(\varphi)}{u^\mp(\varphi)}$$

Corollary (Restated...)

The quantity

$$\frac{1}{\Omega(\varphi)\chi(-1)(-1)^m} \frac{L(m, \varphi, \chi)}{L(m + 1, \varphi, \chi)}$$

is algebraic and $\text{Gal}({\overline{\mathbb{Q}}}/\mathbb{Q})$-equivariant.
Corollary (to Shimura’s theorem)

Let \(\varphi \in S_k(N, \omega)_{\text{prim}} \).

For any integer \(m \) with \(1 \leq m \leq k - 2 \), and any Dirichlet character \(\chi \) we have

\[
\frac{L_f(m, \varphi, \chi)}{L_f(m + 1, \varphi, \chi)} \sim (2\pi i)^{-1} \frac{u^\pm(\varphi)}{u^\mp(\varphi)}
\]

Corollary (Restated…)

The quantity

\[
\frac{1}{\Omega(\varphi) \chi(-1)(-1)^m} \frac{L(m, \varphi, \chi)}{L(m + 1, \varphi, \chi)}
\]

is algebraic and \(\Gal(\bar{Q}/Q) \)-equivariant.
Corollary (to Shimura’s theorem)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$.

For any integer m with $1 \leq m \leq k - 2$, and any Dirichlet character χ we have

$$\frac{L_f(m, \varphi, \chi)}{L_f(m + 1, \varphi, \chi)} \sim (2\pi i)^{-1} \frac{u^\pm(\varphi)}{u^\mp(\varphi)}$$

Corollary (Restated...)

The quantity

$$\frac{1}{\Omega(\varphi)\chi(-1)(-1)^m} \frac{L(m, \varphi, \chi)}{L(m + 1, \varphi, \chi)}$$

is algebraic and $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Corollary (to Shimura’s theorem)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. For any integer m with $1 \leq m \leq k - 2$, and any Dirichlet character χ we have

$$\frac{L_f(m, \varphi, \chi)}{L_f(m + 1, \varphi, \chi)} \sim (2\pi i)^{-1} \frac{u^\pm(\varphi)}{u^\mp(\varphi)}$$

Corollary (Restated...)

The quantity

$$\frac{1}{\Omega(\varphi)\chi(-1)(-1)^m} \frac{L(m, \varphi, \chi)}{L(m + 1, \varphi, \chi)}$$

is algebraic and $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Corollary (to Shimura’s theorem)

Let \(\varphi \in S_k(N, \omega)_{\text{prim}} \).
For any integer \(m \) with \(1 \leq m \leq k - 2 \), and any Dirichlet character \(\chi \) we have

\[
\frac{L_f(m, \varphi, \chi)}{L_f(m + 1, \varphi, \chi)} \sim (2\pi i)^{-1} \frac{u^\pm(\varphi)}{u^\mp(\varphi)}
\]

Corollary (Restated...)

The quantity

\[
\frac{1}{\Omega(\varphi)\chi(-1)(-1)^m} \frac{L(m, \varphi, \chi)}{L(m + 1, \varphi, \chi)}
\]

is algebraic and \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \)-equivariant.
Corollary (to Shimura’s theorem)

Let \(\varphi \in S_k(N, \omega)_{\text{prim}} \).

For any integer \(m \) with \(1 \leq m \leq k - 2 \), and any Dirichlet character \(\chi \) we have

\[
\frac{L_f(m, \varphi, \chi)}{L_f(m + 1, \varphi, \chi)} \sim (2\pi i)^{-1} \frac{u^\pm(\varphi)}{u^\mp(\varphi)}
\]

Corollary (Restated...)

The quantity

\[
\frac{1}{\Omega(\varphi)\chi(-1)(-1)^m} \frac{L(m, \varphi, \chi)}{L(m + 1, \varphi, \chi)}
\]

is algebraic and \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \)-equivariant.
Theorem (Shimura)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. Let $\xi \in S_l(N, \psi)_{\text{prim}}$. Suppose $l \neq k$ and suppose m and $m + 1$ are critical for the degree-4 Rankin-Selberg L-function, then

$$L(m, \varphi \times \xi) \sim L(m + 1, \varphi \times \xi)$$
Theorem (Shimura)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. Let $\xi \in S_l(N, \psi)_{\text{prim}}$. Suppose $l \neq k$ and suppose m and $m + 1$ are critical for the degree-4 Rankin-Selberg L-function, then

$$L(m, \varphi \times \xi) \sim L(m + 1, \varphi \times \xi)$$
Theorem (Shimura)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. Let $\xi \in S_l(N, \psi)_{\text{prim}}$.

Suppose $l \neq k$ and suppose m and $m + 1$ are critical for the degree-4 Rankin-Selberg L-function, then

$$L(m, \varphi \times \xi) \sim L(m + 1, \varphi \times \xi)$$
Theorem (Shimura)

Let $\varphi \in S_k(N, \omega)_{\text{prim}}$. Let $\xi \in S_l(N, \psi)_{\text{prim}}$. Suppose $l \neq k$ and suppose m and $m + 1$ are critical for the degree-4 Rankin-Selberg L-function, then

$$L(m, \varphi \times \xi) \sim L(m + 1, \varphi \times \xi)$$
Theorem (Harder + R.)

Let $G_n = \text{GL}_n / F$, with F a totally real field. Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$. Assume that n is even and n' is odd. Put $N = n + n'$.

There exists a nonzero complex number $\Omega(\pi)$ depending only on π such that if a combinatorial condition $C(\mu, \mu')$ holds then

\[
\frac{L(-N/2, \pi \times \pi')}{L(1 - N/2, \pi \times \pi')} \sim \Omega(\pi, \pi') \Omega(\pi)^{\epsilon'}
\]

for a sign ϵ' depending only on π'.

A. Raghuram
Theorem (Harder + R.)

Let $G_n = \text{GL}_n/F$, with F a totally real field.
Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$.
Assume that n is even and n' is odd. Put $N = n + n'$.
There exists a nonzero complex number $\Omega(\pi)$ depending only on π such that if a combinatorial condition $C(\mu, \mu')$ holds then

$$\frac{L(-N/2, \pi \times \pi')}{L(1 - N/2, \pi \times \pi')} \sim Q(\pi, \pi') \Omega(\pi)^{\epsilon'}$$

for a sign ϵ' depending only on π'.
Theorem (Harder + R.)

Let $G_n = \text{GL}_n/F$, with F a totally real field. Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$. Assume that n is even and n' is odd. Put $N = n + n'$. There exists a nonzero complex number $\Omega(\pi)$ depending only on π such that if a combinatorial condition $C(\mu, \mu')$ holds then

$$\frac{L(-N/2, \pi \times \pi')}{L(1 - N/2, \pi \times \pi')} \sim \mathbb{Q}(\pi, \pi') \Omega(\pi)^{\epsilon'}$$

for a sign ϵ' depending only on π'.

A. Raghuram
Theorem (Harder + R.)

Let $G_n = \text{GL}_n / F$, with F a totally real field. Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$. Assume that n is even and n' is odd. Put $N = n + n'$.

There exists a nonzero complex number $\Omega(\pi)$ depending only on π such that if a combinatorial condition $C(\mu, \mu')$ holds then

$$
\frac{L(-N/2, \pi \times \pi')}{L(1 - N/2, \pi \times \pi')} \sim Q(\pi, \pi') \Omega(\pi)^{\epsilon'}
$$

for a sign ϵ' depending only on π'.
Theorem (Harder + R.)

Let $G_n = \text{GL}_n/F$, with F a totally real field. Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$. Assume that n is even and n' is odd. Put $N = n + n'$.

There exists a nonzero complex number $\Omega(\pi)$ depending only on π such that if a combinatorial condition $C(\mu, \mu')$ holds then

$$\frac{L(-N/2, \pi \times \pi')}{L(1 - N/2, \pi \times \pi')} \sim \mathcal{Q}(\pi, \pi') \Omega(\pi)^{\epsilon'}$$

for a sign ϵ' depending only on π'.

A. Raghuram
Theorem (Harder + R.)

Let $G_n = \text{GL}_n / F$, with F a totally real field.
Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$.
Assume that n is even and n' is odd. Put $N = n + n'$.
There exists a nonzero complex number $\Omega(\pi)$ depending only on π such that if a combinatorial condition $C(\mu, \mu')$ holds then

$$\frac{L(-N/2, \pi \times \pi')}{L(1 - N/2, \pi \times \pi')} \sim Q(\pi, \pi') \Omega(\pi) \epsilon'$$

for a sign ϵ' depending only on π'.

A. Raghuram
Theorem (Harder + R.)

Let \(G_n = \text{GL}_n/F \), with \(F \) a totally real field. Let \(\pi \in \text{Coh}(G_n, \mu) \), and \(\pi' \in \text{Coh}(G_{n'}, \mu') \). Assume that \(n \) is even and \(n' \) is odd. Put \(N = n + n' \).

There exists a nonzero complex number \(\Omega(\pi) \) depending only on \(\pi \) such that if a combinatorial condition \(C(\mu, \mu') \) holds then

\[
\frac{L(-N/2, \pi \times \pi')}{L(1 - N/2, \pi \times \pi')} \sim \mathbb{Q}(\pi, \pi') \Omega(\pi)^{\epsilon'}
\]

for a sign \(\epsilon' \) depending only on \(\pi' \).
The combinatorial lemma $C(\mu, \mu')$

The following three conditions on the weights μ and μ' are equivalent:

1. $-N/2$ and $1 - N/2$ are critical for $L(s, \pi \times \pi')$.
2. $C(\mu, \mu')$ is a condition of the form:
 \[\text{abelian width}(\mu, \mu') \leq \text{cuspidal width}(\mu, \mu'). \]
3. There exists $w \in W^P$, with $l(w) = nn'/2$ and $w^{-1} \cdot (\mu + \mu')$ is dominant.

If $\pi \mapsto \pi \otimes | |^r$ then $\mu \mapsto \mu - r$ for $r \in \mathbb{Z}$. Do this as long as $C(\mu - r, \mu')$ holds. This gives us a rationality theorem for every successive pair of critical values; no more and no less!

A. Raghuram
The combinatorial lemma $C(\mu, \mu')$

The following three conditions on the weights μ and μ' are equivalent:

1. $-N/2$ and $1 - N/2$ are critical for $L(s, \pi \times \pi')$.
2. $C(\mu, \mu')$ is a condition of the form:

 \[
 \text{abelian} - \text{width}(\mu, \mu') \leq \text{cuspidal} - \text{width}(\mu, \mu').
 \]

3. There exists $w \in W^P$, with $l(w) = nn'/2$ and $w^{-1} \cdot (\mu + \mu')$ is dominant.

If $\pi \mapsto \pi \otimes | |^r$ then $\mu \mapsto \mu - r$ for $r \in \mathbb{Z}$. Do this as long as $C(\mu - r, \mu')$ holds. This gives us a rationality theorem for every successive pair of critical values; no more and no less!
The combinatorial lemma $C(\mu, \mu')$

The following three conditions on the weights μ and μ' are equivalent:

1. $-N/2$ and $1 - N/2$ are critical for $L(s, \pi \times \pi')$.

2. $C(\mu, \mu')$ is a condition of the form:

 $$\text{abelian} - \text{width}(\mu, \mu') \leq \text{cuspidal} - \text{width}(\mu, \mu').$$

3. There exists $w \in W^P$, with $l(w) = nn'/2$ and $w^{-1} \cdot (\mu + \mu')$ is dominant.

If $\pi \mapsto \pi \otimes |r$ then $\mu \mapsto \mu - r$ for $r \in \mathbb{Z}$. Do this as long as $C(\mu - r, \mu')$ holds. This gives us a rationality theorem for every successive pair of critical values; no more and no less!

A. Raghuram
The combinatorial lemma $C(\mu, \mu')$

The following three conditions on the weights μ and μ' are equivalent:

1. $-N/2$ and $1 - N/2$ are critical for $L(s, \pi \times \pi')$.
2. $C(\mu, \mu')$ is a condition of the form:
 \[
 \text{abelian} - \text{width}(\mu, \mu') \leq \text{cuspidal} - \text{width}(\mu, \mu').
 \]
3. There exists $w \in \mathcal{W}^P$, with $l(w) = nn'/2$ and $w^{-1} \cdot (\mu + \mu')$ is dominant.

If $\pi \mapsto \pi \otimes \mid \mid ^r$ then $\mu \mapsto \mu - r$ for $r \in \mathbb{Z}$. Do this as long as $C(\mu - r, \mu')$ holds. This gives us a rationality theorem for every successive pair of critical values; no more and no less!
Theorem (Harder + R.)

Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$. If both n and n' are even, and if m and $m + 1$ are critical for $L(s, \pi \times \pi')$ then

$$L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')$$
Rankin–Selberg L-functions (with Günter Harder)

Theorem (Harder + R.)

Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$.

If both n and n' are even, and if m and $m+1$ are critical for $L(s, \pi \times \pi')$ then

$$L(m, \pi \times \pi') \sim L(m+1, \pi \times \pi')$$
Theorem (Harder + R.)

Let \(\pi \in \text{Coh}(G_n, \mu) \), and \(\pi' \in \text{Coh}(G_{n'}, \mu') \).

If both \(n \) and \(n' \) are even, and if \(m \) and \(m + 1 \) are critical for \(L(s, \pi \times \pi') \) then

\[
L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')
\]
Rankin–Selberg L-functions (with Günter Harder)

Theorem (Harder + R.)

Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$. If both n and n' are even, and if m and $m + 1$ are critical for $L(s, \pi \times \pi')$ then

$$L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')$$
Theorem (Harder + R.)

Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$. If both n and n' are even, and if m and $m + 1$ are critical for $L(s, \pi \times \pi')$ then

$$L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')$$
Theorem ("Theorem")

Let \(\pi \in \text{Coh}(G_n, \mu) \), and \(\pi' \in \text{Coh}(G_{n'}, \mu') \) but now over a CM-field. If \(m \) and \(m + 1 \) are critical for \(L(s, \pi \times \pi') \) then

\[
L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')
\]

This theorem has a large intersection in its scope with the works of Michael Harris, Harald Grobner and Jie Lin.
A classical example
Automorphic L-functions
Periods of motives
Adumbrating the proofs

Rankin–Selberg L-functions over a CM field

Theorem ("Theorem")

Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$ but now over a CM-field. If m and $m + 1$ are critical for $L(s, \pi \times \pi')$ then

$$L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')$$

This theorem has a large intersection in its scope with the works of Michael Harris, Harald Grobner and Jie Lin.
Theorem ("Theorem")

Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$ but now over a CM-field. If m and $m + 1$ are critical for $L(s, \pi \times \pi')$ then

$$L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')$$

This theorem has a large intersection in its scope with the works of Michael Harris, Harald Grobner and Jie Lin.
Theorem ("Theorem")

Let \(\pi \in \text{Coh}(G_n, \mu) \), and \(\pi' \in \text{Coh}(G_{n'}, \mu') \) but now over a CM-field. If \(m \) and \(m + 1 \) are critical for \(L(s, \pi \times \pi') \) then

\[
L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')
\]

This theorem has a large intersection in its scope with the works of Michael Harris, Harald Grobner and Jie Lin.
Theorem ("Theorem")

Let $\pi \in \text{Coh}(G_n, \mu)$, and $\pi' \in \text{Coh}(G_{n'}, \mu')$ but now over a CM-field. If m and $m + 1$ are critical for $L(s, \pi \times \pi')$ then

$$L(m, \pi \times \pi') \sim L(m + 1, \pi \times \pi')$$

This theorem has a large intersection in its scope with the works of Michael Harris, Harald Grobner and Jie Lin.
L-functions for orthogonal groups (with C. Bhagwat)

Theorem ("Theorem")

Let \(n = 2r \geq 2 \) be an even positive integer. Consider \(\text{SO}(n, n)/\mathbb{Q} \) defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let \(\mu \) be a dominant integral weight written as \(\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|) \), with \(\mu_j \in \mathbb{Z} \). Let \(\sigma \) be a cuspidal automorphic representation of \(\text{SO}(n, n)/\mathbb{Q} \). Assume:

1. the Arthur parameter \(\psi_{\sigma} \) is cuspidal on \(\text{GL}_{2n}/\mathbb{Q} \);
2. \(\sigma \) is globally generic;
3. \(\sigma_{\infty}|_{\text{SO}(n,n)(\mathbb{R})^0} \) is a discrete series representation with Harish-Chandra parameter \(\mu + \rho_n \).

Let \(\chi \) be a finite order character of \(\mathbb{Q}^\times \backslash \mathbb{A}^\times \). ... (cont.)
Theorem ("Theorem")

Let \(n = 2r \geq 2 \) be an even positive integer. Consider \(\text{SO}(n, n)/\mathbb{Q} \) defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let \(\mu \) be a dominant integral weight written as \(\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|) \), with \(\mu_j \in \mathbb{Z} \). Let \(\sigma \) be a cuspidal automorphic representation of \(\text{SO}(n, n)/\mathbb{Q} \). Assume:

1. the Arthur parameter \(\Psi_\sigma \) is cuspidal on \(\text{GL}_{2n}/\mathbb{Q} \);
2. \(\sigma \) is globally generic;
3. \(\sigma_\infty|_{\text{SO}(n,n)(\mathbb{R})^0} \) is a discrete series representation with Harish-Chandra parameter \(\mu + \rho_n \).

Let \(\chi \) be a finite order character of \(\mathbb{Q}^\times \backslash \mathbb{A}^\times \). ... (cont.)
Theorem ("Theorem")

Let $n = 2r \geq 2$ be an even positive integer. Consider $\text{SO}(n, n) / \mathbb{Q}$ defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let μ be a dominant integral weight written as $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|)$, with $\mu_j \in \mathbb{Z}$. Let σ be a cuspidal automorphic representation of $\text{SO}(n, n) / \mathbb{Q}$. Assume:

1. the Arthur parameter Ψ_{σ} is cuspidal on $\text{GL}_{2n} / \mathbb{Q}$;
2. σ is globally generic;
3. $\sigma_{\infty}|_{\text{SO}(n,n)(\mathbb{R})^0}$ is a discrete series representation with Harish-Chandra parameter $\mu + \rho_n$.

Let $\circ \chi$ be a finite order character of $\mathbb{Q}^\times \backslash \mathbb{A}^\times$. ... (cont.)
Theorem ("Theorem")

Let $n = 2r \geq 2$ be an even positive integer. Consider $\text{SO}(n, n)/\mathbb{Q}$ defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let μ be a dominant integral weight written as $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|)$, with $\mu_j \in \mathbb{Z}$. Let σ be a cuspidal automorphic representation of $\text{SO}(n, n)/\mathbb{Q}$. Assume:

1. the Arthur parameter Ψ_σ is cuspidal on $\text{GL}_{2n}/\mathbb{Q}$;
2. σ is globally generic;
3. $\sigma_\infty|_{\text{SO}(n,n)(\mathbb{R})^0}$ is a discrete series representation with Harish-Chandra parameter $\mu + \rho_n$.

Let χ be a finite order character of $\mathbb{Q}^\times \backslash \mathbb{A}^\times$. … (cont.)
Theorem ("Theorem")

Let $n = 2r \geq 2$ be an even positive integer. Consider $\text{SO}(n, n)/\mathbb{Q}$ defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let μ be a dominant integral weight written as $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|)$, with $\mu_j \in \mathbb{Z}$. Let σ be a cuspidal automorphic representation of $\text{SO}(n, n)/\mathbb{Q}$. Assume:

1. the Arthur parameter ψ_σ is cuspidal on $\text{GL}_{2n}/\mathbb{Q}$;
2. σ is globally generic;
3. $\sigma_\infty|_{\text{SO}(n, n)(\mathbb{R})^0}$ is a discrete series representation with Harish-Chandra parameter $\mu + \rho_n$.

Let χ be a finite order character of $\mathbb{Q}^\times \backslash \mathbb{A}^\times$. ... (cont.)
Theorem ("Theorem")

Let \(n = 2r \geq 2 \) be an even positive integer. Consider \(\text{SO}(n, n)/\mathbb{Q} \) defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let \(\mu \) be a dominant integral weight written as \(\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|) \), with \(\mu_j \in \mathbb{Z} \). Let \(\sigma \) be a cuspidal automorphic representation of \(\text{SO}(n, n)/\mathbb{Q} \). Assume:

1. the Arthur parameter \(\Psi_\sigma \) is cuspidal on \(\text{GL}_{2n}/\mathbb{Q} \);
2. \(\sigma \) is globally generic;
3. \(\sigma_\infty \mid_{\text{SO}(n,n)(\mathbb{R})^0} \) is a discrete series representation with Harish-Chandra parameter \(\mu + \rho_n \).

Let \(\chi \) be a finite order character of \(\mathbb{Q}^\times \backslash \mathbb{A}^\times \). ... (cont.)
Theorem ("Theorem")

Let $n = 2r \geq 2$ be an even positive integer. Consider $\text{SO}(n, n)/\mathbb{Q}$ defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let μ be a dominant integral weight written as $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|)$, with $\mu_j \in \mathbb{Z}$. Let σ be a cuspidal automorphic representation of $\text{SO}(n, n)/\mathbb{Q}$. Assume:

1. the Arthur parameter Ψ_{σ} is cuspidal on $\text{GL}_{2n}/\mathbb{Q}$;
2. σ is globally generic;
3. $\sigma_{\infty}|_{\text{SO}(n,n)(\mathbb{R})^0}$ is a discrete series representation with Harish-Chandra parameter $\mu + \rho_n$.

Let χ be a finite order character of $\mathbb{Q}^\times \backslash \mathbb{A}^\times$.

... (cont.)
Theorem ("Theorem")

Let $n = 2r \geq 2$ be an even positive integer. Consider $\text{SO}(n, n)/\mathbb{Q}$ defined so that the subgroup of all upper-triangular matrices is a Borel subgroup. Let μ be a dominant integral weight written as $\mu = (\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1} \geq |\mu_n|)$, with $\mu_j \in \mathbb{Z}$. Let σ be a cuspidal automorphic representation of $\text{SO}(n, n)/\mathbb{Q}$. Assume:

1. the Arthur parameter Ψ_σ is cuspidal on $\text{GL}_{2n}/\mathbb{Q}$;
2. σ is globally generic;
3. $\sigma_\infty|_{\text{SO}(n, n)(\mathbb{R})^0}$ is a discrete series representation with Harish-Chandra parameter $\mu + \rho_n$.

Let $\hat{\chi}$ be a finite order character of $\mathbb{Q}^\times \backslash \mathbb{A}^\times$. ... (cont.)
Then the critical set for the degree-2n completed L-function $L(s, \chi \times \sigma)$ is the finite set of contiguous integers

$$\{1 - |\mu_n|, 2 - |\mu_n|, \ldots, |\mu_n|\}.$$

Assume also that $|\mu_n| \geq 1$, and suppose m and $m + 1$ are both critical, then

$$L(m, \chi \times \sigma) \approx L(m + 1, \chi \times \sigma),$$

where \approx means up to an element of a number field $\mathbb{Q}(\chi, \sigma)$, and furthermore, all the successive ratios are equivariant under $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

A. Raghuram
Theorem (cont.)

Then the critical set for the degree-2n completed L-function $L(s, \chi \times \sigma)$ is the finite set of contiguous integers

$$\{1 - |\mu_n|, 2 - |\mu_n|, \ldots, |\mu_n|\}.$$

Assume also that $|\mu_n| \geq 1$, and suppose m and $m + 1$ are both critical, then

$$L(m, \chi \times \sigma) \approx L(m + 1, \chi \times \sigma),$$

where \approx means up to an element of a number field $\mathbb{Q}(\chi, \sigma)$, and furthermore, all the successive ratios are equivariant under $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.
A classical example
Automorphic L-functions
Periods of motives
Adumbrating the proofs

L-functions for orthogonal groups (with C. Bhagwat)

Theorem (cont.)

Then the critical set for the degree-2n completed L-function $L(s, \circ \chi \times \sigma)$ is the finite set of contiguous integers

$$\{1 - |\mu_n|, 2 - |\mu_n|, \ldots, |\mu_n|\}.$$

Assume also that $|\mu_n| \geq 1$, and suppose m and $m + 1$ are both critical, then

$$L(m, \circ \chi \times \sigma) \approx L(m + 1, \circ \chi \times \sigma),$$

where \approx means up to an element of a number field $\mathbb{Q}(\circ \chi, \sigma)$, and furthermore, all the successive ratios are equivariant under $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

A. Raghuram
A classical example
Automorphic L-functions
Periods of motives
Adumbrating the proofs

L-functions for orthogonal groups (with C. Bhagwat)

Theorem (cont.)

Then the critical set for the degree-$2n$ completed L-function
$L(s, \circ \chi \times \sigma)$ is the finite set of contiguous integers

\[\{ 1 - |\mu_n|, 2 - |\mu_n|, \ldots, |\mu_n| \} . \]

Assume also that $|\mu_n| \geq 1$, and suppose m and $m + 1$ are both critical, then

\[L(m, \circ \chi \times \sigma) \approx L(m + 1, \circ \chi \times \sigma) , \]

where \approx means up to an element of a number field $\mathbb{Q}(\circ \chi, \sigma)$, and furthermore, all the successive ratios are equivariant under $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

A. Raghuram
Theorem ("Theorem")

Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \text{Coh}(\text{GL}_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, \text{As}^\pm \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, \text{As}^\pm \otimes \chi)$ then we have:

$$L(m, \pi, \text{As}^\pm \otimes \chi) \approx L(m + 1, \pi, \text{As}^\pm \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\text{Gal}($\overline{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Theorem ("Theorem")

Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \text{Coh}(\text{GL}_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, \text{As}^{\pm} \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, \text{As}^{\pm} \otimes \chi)$ then we have:

$$L(m, \pi, \text{As}^{\pm} \otimes \chi) \approx L(m + 1, \pi, \text{As}^{\pm} \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Theorem ("Theorem")

Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \text{Coh}(\text{GL}_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, \text{As}^{\pm} \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, \text{As}^{\pm} \otimes \chi)$ then we have:

$$L(m, \pi, \text{As}^{\pm} \otimes \chi) \approx L(m + 1, \pi, \text{As}^{\pm} \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \mathrm{Coh}(\mathrm{GL}_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, \mathrm{As}^\pm \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, \mathrm{As}^\pm \otimes \chi)$ then we have:

$$L(m, \pi, \mathrm{As}^\pm \otimes \chi) \approx L(m + 1, \pi, \mathrm{As}^\pm \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Theorem ("Theorem")

Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \text{Coh}(\text{GL}_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, \text{As}^\pm \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, \text{As}^\pm \otimes \chi)$ then we have:

$$L(m, \pi, \text{As}^\pm \otimes \chi) \approx L(m + 1, \pi, \text{As}^\pm \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Theorem ("Theorem")

Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \text{Coh}(GL_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, As^\pm \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, As^\pm \otimes \chi)$ then we have:

$$L(m, \pi, As^\pm \otimes \chi) \approx L(m + 1, \pi, As^\pm \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Theorem ("Theorem")

Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \text{Coh}(\text{GL}_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, \text{As}^{\pm} \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, \text{As}^{\pm} \otimes \chi)$ then we have:

$$L(m, \pi, \text{As}^{\pm} \otimes \chi) \approx L(m + 1, \pi, \text{As}^{\pm} \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Asai L-functions (with Muthu Krishnamurthy)

Theorem ("Theorem")

Let E/F be a quadratic extension of totally real fields. Suppose $\pi \in \text{Coh}(\text{GL}_n/E, \mu)$. Let χ be a finite order character over F. Then the critical set for degree n^2 twisted Asai L-function $L(s, \pi, \text{As}^\pm \otimes \chi)$ is an explicit contiguous string of half-integers determined by μ. Suppose m and $m + 1$ are both critical for $L(s, \pi, \text{As}^\pm \otimes \chi)$ then we have:

$$L(m, \pi, \text{As}^\pm \otimes \chi) \approx L(m + 1, \pi, \text{As}^\pm \otimes \chi),$$

where, by \approx, we mean equality up to an element of the rationality field $\mathbb{Q}(\pi, \chi)$. Furthermore, the ratio of the two L-values is algebraic and is $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$-equivariant.
Deligne’s Conjecture

Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. Betti realization $H_B(M)$ with Hodge decomposition

 $H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}$.

2. de Rham realization $H_{dR}(M)$ with a Hodge filtration.

3. ℓ-adic realization $H_\ell(M)$ with a Galois action.

The comparison isomorphism between

$$H_B(M) \otimes_E \mathbb{C} \rightarrow H_{dR}(M) \otimes_E \mathbb{C}$$

gives two periods $c^{\pm}(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_\ell(M)$ is the motivic L-function $L(s, M)$.

$$L_f(m, M) \sim (2\pi i)^{md^{\pm}(M)} c^{\pm}(M), \quad \pm 1 = (-1)^m.$$
Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. Betti realization $H_B(M)$ with Hodge decomposition

 $H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}.$

2. de Rham realization $H_{dR}(M)$ with a Hodge filtration.

3. ℓ-adic realization $H_{\ell}(M)$ with a Galois action.

The comparison isomorphism between

$$H_B(M) \otimes_E \mathbb{C} \to H_{dR}(M) \otimes_E \mathbb{C}$$

gives two periods $c^{\pm}(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_{\ell}(M)$ is the motivic L-function $L(s, M)$.

$$L_f(m, M) \sim (2\pi i)^{md^{\pm}(M)} c^{\pm}(M), \quad \pm 1 = (-1)^m.$$
Deligne’s Conjecture

Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. Betti realization $H_B(M)$ with Hodge decomposition:
 $$H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}.$$

2. de Rham realization $H_{dR}(M)$ with a Hodge filtration.

3. ℓ-adic realization $H_\ell(M)$ with a Galois action.

The comparison isomorphism between

$$H_B(M) \otimes_E \mathbb{C} \to H_{dR}(M) \otimes_E \mathbb{C}$$

gives two periods $c^{\pm}(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_\ell(M)$ is the motivic L-function $L(s, M)$.

$$L_f(m, M) \sim (2\pi i)^{md^{\pm}(M)} c^{\pm}(M), \quad \pm 1 = (-1)^m.$$
Deligne’s Conjecture

Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. **Betti realization** $H_B(M)$ with Hodge decomposition $H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}$.
2. **de Rham realization** $H_{dR}(M)$ with a Hodge filtration.
3. **ℓ-adic realization** $H_\ell(M)$ with a Galois action.

The comparison isomorphism between

$$H_B(M) \otimes_E \mathbb{C} \to H_{dR}(M) \otimes_E \mathbb{C}$$

gives two periods $c^\pm(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_\ell(M)$ is the motivic L-function $L(s, M)$.

$$L_f(m, M) \sim (2\pi i)^{md^\pm(M)} c^\pm(M), \quad \pm 1 = (-1)^m.$$
Deligne’s Conjecture

Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. Betti realization $H_B(M)$ with Hodge decomposition
 \[H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}. \]

2. de Rham realization $H_{dR}(M)$ with a Hodge filtration.

3. ℓ-adic realization $H_{\ell}(M)$ with a Galois action.

The comparison isomorphism between

\[H_B(M) \otimes_E \mathbb{C} \rightarrow H_{dR}(M) \otimes_E \mathbb{C} \]

gives two periods $c^\pm(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_{\ell}(M)$ is the motivic L-function $L(s, M)$.

\[L_f(m, M) \sim (2\pi i)^{md^\pm(M)} c^\pm(M), \quad \pm 1 = (-1)^m. \]
Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. Betti realization $H_B(M)$ with Hodge decomposition

$$H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}.$$

2. de Rham realization $H_{dR}(M)$ with a Hodge filtration.

3. ℓ-adic realization $H_\ell(M)$ with a Galois action.

The comparison isomorphism between

$$H_B(M) \otimes_E \mathbb{C} \rightarrow H_{dR}(M) \otimes_E \mathbb{C}$$

gives two periods $c^\pm(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_\ell(M)$ is the motivic L-function $L(s, M)$.

$$L_f(m, M) \sim (2\pi i)^{md^\pm(M)} c^\pm(M), \quad \pm 1 = (-1)^m.$$
Deligne’s Conjecture

Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. Betti realization $H_B(M)$ with Hodge decomposition
 \[H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}. \]
2. de Rham realization $H_{dR}(M)$ with a Hodge filtration.
3. ℓ-adic realization $H_{\ell}(M)$ with a Galois action.

The comparison isomorphism between

\[H_B(M) \otimes_E \mathbb{C} \rightarrow H_{dR}(M) \otimes_E \mathbb{C} \]

gives two periods $c^\pm(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_{\ell}(M)$ is the motivic L-function $L(s, M)$.

\[L_f(m, M) \sim (2\pi i)^{md^\pm(M)} c^\pm(M), \quad \pm 1 = (-1)^m. \]
Deligne’s Conjecture

Let M be a pure motive over \mathbb{Q} with coefficients in a number field E. We have the three realizations:

1. Betti realization $H_B(M)$ with Hodge decomposition
$$H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}.$$

2. de Rham realization $H_{dR}(M)$ with a Hodge filtration.

3. ℓ-adic realization $H_\ell(M)$ with a Galois action.

The comparison isomorphism between
$$H_B(M) \otimes_E \mathbb{C} \rightarrow H_{dR}(M) \otimes_E \mathbb{C}$$
gives two periods $c^\pm(M) \in (E \otimes \mathbb{C})^\times / E^\times$.

The Artin L-function attached to the Galois representation on $H_\ell(M)$ is the motivic L-function $L(s, M)$.

$$L_f(m, M) \sim (2\pi i)^{md^\pm(M)} c^\pm(M), \quad \pm 1 = (-1)^m.$$
Deligne’s Conjecture

Let \(M \) be a pure motive over \(\mathbb{Q} \) with coefficients in a number field \(E \). We have the three realizations:

1. Betti realization \(H_B(M) \) with Hodge decomposition
 \[H_B(M) \otimes_E \mathbb{C} = \bigoplus H^{p,q}. \]
2. de Rham realization \(H_{dR}(M) \) with a Hodge filtration.
3. \(\ell \)-adic realization \(H_\ell(M) \) with a Galois action.

The comparison isomorphism between

\[H_B(M) \otimes_E \mathbb{C} \to H_{dR}(M) \otimes_E \mathbb{C} \]

gives two periods \(c^\pm(M) \in (E \otimes \mathbb{C})^\times / E^\times \).

The Artin \(L \)-function attached to the Galois representation on \(H_\ell(M) \) is the motivic \(L \)-function \(L(s, M) \).

\[
L_f(m, M) \sim (2\pi i)^{md^\pm(M)} c^\pm(M), \quad \pm 1 = (-1)^m.
\]
Deligne’s Conjecture (cont.)

Studying the arithmetic of

\[\frac{L(m, M)}{L(m + 1, M)} \]

involves studying the ratio of periods

\[c^+(M)/c^-(M). \]
Studying the arithmetic of

$$\frac{L(m, M)}{L(m + 1, M)}$$

involves studying the ratio of periods

$$c^+(M)/c^-(M).$$
Deligne’s Conjecture (cont.)

Studying the arithmetic of

$$\frac{L(m, M)}{L(m + 1, M)}$$

involves studying the ratio of periods

$$c^+(M)/c^-(M).$$
Theorem ("Theorem")

Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{S} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{S}) defined as:

$$G := \{ g \in \text{GL}(M) : g\mathcal{S} = \mathcal{S}\}^\circ,$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{S}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{v \in V : \rho(\iota)v = \pm v\}$.

A. Raghuram
Theorem ("Theorem")

Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{S} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{S}) defined as:

$$G := \{ g \in \text{GL}(M) : g\mathcal{S} = \mathcal{S} \}^\circ,$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{S}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{ v \in V : \rho(\iota)v = \pm v \}$.

A. Raghuram
Theorem ("Theorem")

Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{S} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{S}) defined as:

$$G := \{ g \in \text{GL}(M) : g \mathcal{S} = \mathcal{S} \}.$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{S}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{ v \in V : \rho(\iota)v = \pm v \}$.
Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{S} some multilinearalgebraic structure on M. We let G be the structure group of (M, \mathcal{S}) defined as:

$$G := \{g \in \text{GL}(M) : g\mathcal{S} = \mathcal{S}\}.$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{S}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{v \in V : \rho(\iota)v = \pm v\}$.
Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{G} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{G}) defined as:

$$G := \{ g \in \text{GL}(M) : g \mathcal{G} = \mathcal{G} \}^\circ,$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{G}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{ v \in V : \rho(\iota)v = \pm v \}$.

A. Raghuram
Theorem ("Theorem")

Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{G} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{G}) defined as:

$$G := \{ g \in \text{GL}(M) : g\mathcal{G} = \mathcal{G}\}^\circ,$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{G}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{ v \in V : \rho(\iota)v = \pm v\}$.

A. Raghuram
Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{S} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{S}) defined as:

$$G := \{ g \in \text{GL}(M) : g\mathcal{S} = \mathcal{S} \},$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{S}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{ v \in V : \rho(\iota)v = \pm v \}$.

A. Raghuram
A classical example
Automorphic L-functions
Periods of motives
Adumbrating the proofs

Motivic periods (with Pierre Deligne)

Theorem ("Theorem")

Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{S} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{S}) defined as:

$$G := \{ g \in \text{GL}(M) : g\mathcal{S} = \mathcal{S}\}^\circ,$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{S}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G.

Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{v \in V : \rho(\iota)v = \pm v\}$.

A. Raghuram
A classical example
Automorphic L-functions
Periods of motives
Adumbrating the proofs

Motivic periods (with Pierre Deligne)

Theorem ("Theorem")

Let M be a pure motive over \mathbb{Q} with coefficients in a field E. Suppose \mathcal{G} some multilinear algebraic structure on M. We let G be the structure group of (M, \mathcal{G}) defined as:

$$G := \{ g \in \text{GL}(M) : g\mathcal{G} = \mathcal{G} \}^\circ,$$

Suppose we are given an algebraic representation of (σ, V) of G defined over E. To this data $\{M, \mathcal{G}, G, (\rho, V)\}$ we can attach a motive M_V. Assume that M_V has no middle Hodge type. Assume also that the real Frobenius ι of M is an element of G. Decompose $V = V^+ \oplus V^-$ into the eigenspaces for the action of $\rho(\iota)$, i.e., $V^\pm := \{ v \in V : \rho(\iota)v = \pm v \}$.

A. Raghuram
Let $Z_G(\iota) := \{ g \in G : g\iota = \iota g \}$ be the centralizer of ι in G. Then $Z_G(\iota)$ stabilizes V^\pm under the representation ρ. Define algebraic characters $\chi^\pm : Z_G(\iota) \to E^\times$ by

\[
\begin{align*}
Z_G(\iota) &\quad \longrightarrow \quad GL(V^\pm) \\
\chi^\pm &\quad \longrightarrow \quad det \\
&\quad \longrightarrow \quad E^\times
\end{align*}
\]

If $\chi^+ = \chi^-$ then $c^+(M_V) \sim c^-(M_V)$.

A. Raghuram
Let $Z_G(\iota) := \{ g \in G : g\iota = \iota g \}$ be the centralizer of ι in G. Then $Z_G(\iota)$ stabilizes V^\pm under the representation ρ. Define algebraic characters $\chi^\pm : Z_G(\iota) \to E^\times$ by

$$
\begin{aligned}
Z_G(\iota) &\longrightarrow GL(V^\pm) \\
&\downarrow \chi^\pm \\
&\downarrow \det \\
&\longrightarrow E^\times
\end{aligned}
$$

If $\chi^+ = \chi^-$ then $c^+(M_V) \sim c^-(M_V)$.
Let $Z_G(\iota) := \{ g \in G : g\iota = \iota g \}$ be the centralizer of ι in G. Then $Z_G(\iota)$ stabilizes V^\pm under the representation ρ. Define algebraic characters $\chi^\pm : Z_G(\iota) \to E^\times$ by

$$Z_G(\iota) \longrightarrow \text{GL}(V^\pm) \quad \chi^\pm \quad \downarrow \text{det} \quad E^\times$$

If $\chi^+ = \chi^-$ then $c^+(M_V) \sim c^-(M_V)$.
Let $Z_G(\iota) := \{ g \in G : g\iota = \iota g \}$ be the centralizer of ι in G. Then $Z_G(\iota)$ stabilizes V^\pm under the representation ρ. Define algebraic characters $\chi^\pm : Z_G(\iota) \to E^\times$ by

\[
\begin{array}{ccc}
Z_G(\iota) & \longrightarrow & \text{GL}(V^\pm) \\
\downarrow \chi^\pm & & \downarrow \det \\
& E^\times & \\
\end{array}
\]

If $\chi^+ = \chi^-$ then $c^+(M_V) \sim c^-(M_V)$.
Let M be a pure motive over \mathbb{Q} of rank $2n$ and purity weight w, and suppose $\beta : M \otimes M \to \mathbb{Q}(\chi)(-w)$ is a symmetric nondegenerate morphism of motives. (Such a β gives an orthogonal structure on M.) Assume

1. M has no middle Hodge type, (hence $d^+ = d^- = n$),
2. n is even, and
3. $\varepsilon_\beta = 1$, i.e., $\chi(-1) = (-1)^w$,

then $c^+(M) \sim c^-(M)$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-$2n$ L-functions for $\text{SO}(n, n)$.
Let M be a pure motive over \mathbb{Q} of rank $2n$ and purity weight w, and suppose $\beta : M \otimes M \to \mathbb{Q}(\chi)(-w)$ is a symmetric nondegenerate morphism of motives. (Such a β gives an orthogonal structure on M.) Assume

1. M has no middle Hodge type, (hence $d^+ = d^- = n$),
2. n is even, and
3. $\varepsilon_\beta = 1$, i.e., $\chi(-1) = (-1)^w$,

then $c^+(M) \sim c^-(M)$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-$2n$ L-functions for $\text{SO}(n, n)$.

A. Raghuram
Example: Orthogonal motives

Let M be a pure motive over \mathbb{Q} of rank $2n$ and purity weight w, and suppose $\beta : M \otimes M \rightarrow \mathbb{Q}(\chi)(-w)$ is a symmetric nondegenerate morphism of motives. (Such a β gives an orthogonal structure on M.) Assume

1. M has no middle Hodge type, (hence $d^+ = d^- = n$),
2. n is even, and
3. $\varepsilon_\beta = 1$, i.e., $\chi(-1) = (-1)^w$,

then $c^+(M) \sim c^-(M)$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-$2n$ L-functions for $\text{SO}(n, n)$.

A. Raghuram
Example: Orthogonal motives

Let M be a pure motive over \mathbb{Q} of rank $2n$ and purity weight w, and suppose $\beta : M \otimes M \to \mathbb{Q}(\chi)(-w)$ is a symmetric nondegenerate morphism of motives. (Such a β gives an orthogonal structure on M.) Assume

1. M has no middle Hodge type, (hence $d^+ = d^- = n$),
2. n is even, and
3. $\varepsilon_{\beta} = 1$, i.e., $\chi(-1) = (-1)^w$,

then $c^+(M) \sim c^-(M)$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-$2n$ L-functions for $\text{SO}(n, n)$.
Example: Orthogonal motives

Let M be a pure motive over \mathbb{Q} of rank $2n$ and purity weight w, and suppose $\beta : M \otimes M \to \mathbb{Q}(\chi)(-w)$ is a symmetric nondegenerate morphism of motives. (Such a β gives an orthogonal structure on M.) Assume

1. M has no middle Hodge type, (hence $d^+ = d^- = n$),
2. n is even, and
3. $\varepsilon_\beta = 1$, i.e., $\chi(-1) = (-1)^w$,

then $c^+(M) \sim c^-(M)$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-$2n$ L-functions for $SO(n, n)$.

A. Raghuram
Example: Asai motives

Let F/\mathbb{Q} be a real quadratic extension. Let M be a pure motive of rank n over F with coefficients in E. Then we have the Asai motives $\text{As}^{\pm}(M)$ both of which are rank n^2-motives over \mathbb{Q} with coefficients in E. Assume n is even, and that $\text{As}^{\pm}(M)$ have no middle Hodge type. Then $c^+(\text{As}^{\pm}(M)) \sim c^-(\text{As}^{\pm}(M))$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-n^2 Asai L-functions for $\text{GL}(n)/F$.
Let F/\mathbb{Q} be a real quadratic extension. Let M be a pure motive of rank n over F with coefficients in E. Then we have the Asai motives $\text{As}^\pm(M)$ both of which are rank n^2-motives over \mathbb{Q} with coefficients in E. Assume n is even, and that $\text{As}^\pm(M)$ have no middle Hodge type. Then $c^+(\text{As}^\pm(M)) \sim c^-(\text{As}^\pm(M))$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-n^2 Asai L-functions for $\text{GL}(n)/F$.
Let F/\mathbb{Q} be a real quadratic extension. Let M be a pure motive of rank n over F with coefficients in E. Then we have the Asai motives $\text{As}^\pm(M)$ both of which are rank n^2-motives over \mathbb{Q} with coefficients in E. Assume n is even, and that $\text{As}^\pm(M)$ have no middle Hodge type. Then $c^+(\text{As}^\pm(M)) \sim c^-(\text{As}^\pm(M))$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-n^2 Asai L-functions for $\text{GL}(n)/F$.
Example: Asai motives

Let F/\mathbb{Q} be a real quadratic extension. Let M be a pure motive of rank n over F with coefficients in E. Then we have the Asai motives $\text{As}^{\pm}(M)$ both of which are rank n^2-motives over \mathbb{Q} with coefficients in E. Assume n is even, and that $\text{As}^{\pm}(M)$ have no middle Hodge type. Then $c^+(\text{As}^{\pm}(M)) \sim c^-(\text{As}^{\pm}(M))$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-n^2 Asai L-functions for $\text{GL}(n)/F$.
Let F/\mathbb{Q} be a real quadratic extension. Let M be a pure motive of rank n over F with coefficients in E. Then we have the Asai motives $As^\pm(M)$ both of which are rank n^2-motives over \mathbb{Q} with coefficients in E. Assume n is even, and that $As^\pm(M)$ have no middle Hodge type. Then $c^+(As^\pm(M)) \sim c^-(As^\pm(M))$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-n^2 Asai L-functions for $GL(n)/F$.

A. Raghuram
Example: Asai motives

Let F/\mathbb{Q} be a real quadratic extension. Let M be a pure motive of rank n over F with coefficients in E. Then we have the Asai motives $\text{As}^\pm(M)$ both of which are rank n^2-motives over \mathbb{Q} with coefficients in E. Assume n is even, and that $\text{As}^\pm(M)$ have no middle Hodge type. Then $c^+(\text{As}^\pm(M)) \sim c^-(\text{As}^\pm(M))$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-n^2 Asai L-functions for $\text{GL}(n)/F$.
Let F/\mathbb{Q} be a real quadratic extension. Let M be a pure motive of rank n over F with coefficients in E. Then we have the Asai motives $\text{As}^\pm(M)$ both of which are rank n^2-motives over \mathbb{Q} with coefficients in E. Assume n is even, and that $\text{As}^\pm(M)$ have no middle Hodge type. Then $c^+(\text{As}^\pm(M)) \sim c^-(\text{As}^\pm(M))$.

This result, together with Deligne’s conjecture and the Langlands program, implies the results on special values of degree-n^2 Asai L-functions for $\text{GL}(n)/F$.

A. Raghuram
Let G be a connected reductive group over \mathbb{Q}. Let K_∞ be the maximal compact subgroup of $G_\infty = G(\mathbb{R})$ thickened by the maximal central split torus. Define

$$S^G_{K_f} := G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K_f.$$

Let E_λ be a finite-dimensional irreducible representation of G with highest weight λ. It is defined over \mathbb{Q}. Let \mathcal{E}_λ be the corresponding local system on $S^G_{K_f}$. We are interested in the arithmetic information contained in the $G(\mathbb{A}_f) \times \pi_0(G_\infty)$-modules

$$H^\bullet(S^G, \mathcal{E}_\lambda) := \lim_{\rightarrow} H^\bullet(S^G_{K_f}, \mathcal{E}_\lambda).$$
Let G be a connected reductive group over \mathbb{Q}. Let K_∞ be the maximal compact subgroup of $G_\infty = G(\mathbb{R})$ thickened by the maximal central split torus. Define

$$S^G_{K_f} := G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K_f.$$

Let E_λ be a finite-dimensional irreducible representation of G with highest weight λ. It is defined over \mathbb{Q}. Let \mathcal{E}_λ be the corresponding local system on $S^G_{K_f}$. We are interested in the arithmetic information contained in the $G(\mathbb{A}_f) \times \pi_0(G_\infty)$-modules

$$H^\bullet(S^G, \mathcal{E}_\lambda) := \lim_{\rightarrow} H^\bullet(S^G_{K_f}, \mathcal{E}_\lambda).$$
Let G be a connected reductive group over \mathbb{Q}. Let K_{∞} be the maximal compact subgroup of $G_{\infty} = G(\mathbb{R})$ thickened by the maximal central split torus. Define

$$S_{K_f}^G := G(\mathbb{Q}) \backslash G(\mathbb{A}) / K^0_{\infty} K_f.$$

Let E_{λ} be a finite-dimensional irreducible representation of G with highest weight λ. It is defined over \mathbb{Q}. Let \mathcal{E}_{λ} be the corresponding local system on $S_{K_f}^G$. We are interested in the arithmetic information contained in the $G(\mathbb{A}_f) \times \pi_0(G_{\infty})$-modules

$$H^\bullet(S^G, \mathcal{E}_{\lambda}) := \lim_{\rightarrow} H^\bullet(S_{K_f}^G, \mathcal{E}_{\lambda}).$$
Let G be a connected reductive group over \mathbb{Q}. Let K_∞ be the maximal compact subgroup of $G_\infty = G(\mathbb{R})$ thickened by the maximal central split torus.

Define

$$S^G_{K_f} := \frac{G(\mathbb{Q}) \backslash G(\mathbb{A})}{K_\infty K_f}.$$

Let E_λ be a finite-dimensional irreducible representation of G with highest weight λ. It is defined over \mathbb{Q}. Let \mathcal{E}_λ be the corresponding local system on $S^G_{K_f}$.

We are interested in the arithmetic information contained in the $G(\mathbb{A}_f) \times \pi_0(G_\infty)$-modules

$$H^\bullet(S^G, \mathcal{E}_\lambda) := \lim_{\rightarrow} H^\bullet(S^G_{K_f}, \mathcal{E}_\lambda).$$
Let G be a connected reductive group over \mathbb{Q}.
Let K_∞ be the maximal compact subgroup of $G_\infty = G(\mathbb{R})$ thickened by the maximal central split torus. Define

$$S^G_{K_f} := G(\mathbb{Q}) \backslash G(\mathbb{A}) / K_\infty K_f.$$

Let E_λ be a finite-dimensional irreducible representation of G with highest weight λ. It is defined over \mathbb{Q}.
Let \mathcal{E}_λ be the corresponding local system on $S^G_{K_f}$.
We are interested in the arithmetic information contained in the $G(\mathbb{A}_f) \times \pi_0(G_\infty)$-modules

$$H^\bullet(S^G, \mathcal{E}_\lambda) := \lim_{\to} H^\bullet(S^G_{K_f}, \mathcal{E}_\lambda).$$
Let G be a connected reductive group over \mathbb{Q}. Let K_∞ be the maximal compact subgroup of $G_\infty = G(\mathbb{R})$ thickened by the maximal central split torus. Define

$$S^G_{K_f} := \frac{G(\mathbb{Q}) \backslash G(\mathbb{A})}{K_\infty K_f}.$$

Let E_λ be a finite-dimensional irreducible representation of G with highest weight λ. It is defined over \mathbb{Q}. Let \mathcal{E}_λ be the corresponding local system on $S^G_{K_f}$. We are interested in the arithmetic information contained in the \(G(\mathbb{A}_f) \times \pi_0(G_\infty) \)-modules

$$H^\bullet(S^G, \mathcal{E}_\lambda) := \lim_{\longrightarrow} H^\bullet(S^G_{K_f}, \mathcal{E}_\lambda).$$
Eine kleine Einführung: Eisenstein Kohomologie

Let G be a connected reductive group over \mathbb{Q}. Let K_∞ be the maximal compact subgroup of $G_\infty = G(\mathbb{R})$ thickened by the maximal central split torus. Define

$$S_{K_f}^G := G(\mathbb{Q}) \setminus G(\mathbb{A}) / K_\infty K_f.$$

Let E_λ be a finite-dimensional irreducible representation of G with highest weight λ. It is defined over \mathbb{Q}. Let \mathcal{E}_λ be the corresponding local system on $S_{K_f}^G$. We are interested in the arithmetic information contained in the $G(\mathbb{A}_f) \times \pi_0(G_\infty)$-modules

$$H^\bullet(S^G, \mathcal{E}_\lambda) := \lim_{\to} H^\bullet(S_{K_f}^G, \mathcal{E}_\lambda).$$
Inner cohomology is defined as:

\[H_i^\bullet(S^G, \mathcal{E}_\lambda) := \text{Image}(H_c^\bullet(S^G, \mathcal{E}_\lambda) \to H^\bullet(S^G, \mathcal{E}_\lambda)) \]

Inside inner cohomology is a transcendentally defined subspace called cuspidal cohomology.

\[H_{\text{cusp}}^\bullet(\ldots) \subset H_i^\bullet(\ldots) \subset H^\bullet(\ldots) \]
Inner cohomology

Inner cohomology is defined as:

\[H^i_c(S^G, \mathcal{E}_\lambda) := \text{Image}(H^i_c(S^G, \mathcal{E}_\lambda) \to H^i(S^G, \mathcal{E}_\lambda)) \]

Inside inner cohomology is a transcendentally defined subspace called cuspidal cohomology.

\[H^i_{\text{cusp}}(..) \subset H^i(..) \subset H^i(..) \]
Inner cohomology is defined as:

\[H^\bullet_i(S^G, E_\lambda) := \text{Image}(H^\bullet_c(S^G, E_\lambda) \to H^\bullet(S^G, E_\lambda)) \]

Inside inner cohomology is a transcendentally defined subspace called cuspidal cohomology.

\[H^\bullet_{cusp}(..) \subset H^\bullet_i(..) \subset H^\bullet(..) \]
Inner cohomology is defined as:

\[H_i^\bullet(S^G, \mathcal{E}_\lambda) := \text{Image}(H^\bullet_c(S^G, \mathcal{E}_\lambda) \to H^\bullet(S^G, \mathcal{E}_\lambda)) \]

Inside inner cohomology is a transcendentally defined subspace called cuspidal cohomology.

\[H^\bullet_{cusp}(..) \subset H_i^\bullet(..) \subset H^\bullet(..) \]
Cuspidal cohomology

Cuspidal cohomology is defined by the diagram:

\[
\begin{array}{c}
H^\bullet(S^G, \mathcal{E}_\lambda) \rightarrow H^\bullet(g_\infty, K^0_\infty; C^\infty(G(\mathbb{Q})\backslash G(\mathbb{A})) \otimes E_\lambda) \\
\downarrow \downarrow \\
H^\bullet_{\text{cusp}}(S^G, \mathcal{E}_\lambda) \rightarrow H^\bullet(g_\infty, K^0_\infty; C^\infty_{\text{cusp}}(G(\mathbb{Q})\backslash G(\mathbb{A})) \otimes E_\lambda)
\end{array}
\]

Let $G = \text{GL}_n/\mathbb{Q}$ and $b_n = [n^2/4]$. As a $G(\mathbb{A}_f) \times \pi_0(G_\infty)$-module, we have a multiplicity free decomposition:

\[
H^b_{\text{cusp}}(S^G, \mathcal{E}_\lambda) = \bigoplus H^b_{\text{cusp}}(S^G, \mathcal{E}_\lambda)[\Pi_f \times \epsilon]
\]
Cuspidal cohomology is defined by the diagram:

\[
\begin{align*}
H^\bullet(S^G, \mathcal{E}_\lambda) & \to H^\bullet(g_\infty, K_\infty^0; C^\infty(G(\mathbb{Q}) \backslash G(\mathbb{A})) \otimes E_\lambda) \\
H^\bullet_{\text{cusp}}(S^G, \mathcal{E}_\lambda) & \to H^\bullet(g_\infty, K_\infty^0; C^\infty_{\text{cusp}}(G(\mathbb{Q}) \backslash G(\mathbb{A})) \otimes E_\lambda)
\end{align*}
\]

Let \(G = \text{GL}_n/\mathbb{Q} \) and \(b_n = \lfloor n^2/4 \rfloor \). As a \(G(\mathbb{A}_f) \times \pi_0(G_\infty) \)-module we have a multiplicity free decomposition:

\[
H^b_{\text{cusp}}(S^G, \mathcal{E}_\lambda) = \bigoplus H^b_{\text{cusp}}(S^G, \mathcal{E}_\lambda)[\prod_f \times \epsilon]
\]
Cuspidal cohomology is defined by the diagram:

\[
\begin{array}{c}
\cdots \\
H^\bullet(S^G, \mathcal{E}_\lambda) \ar[r] & H^\bullet(g_\infty, K_\infty^0; C^\infty(G(\mathbb{Q}) \backslash G(\mathbb{A})) \otimes E_\lambda) \\
\uparrow & \\
H^\bullet_{\text{cusp}}(S^G, \mathcal{E}_\lambda) \ar[r] & H^\bullet(g_\infty, K_\infty^0; C^\infty_{\text{cusp}}(G(\mathbb{Q}) \backslash G(\mathbb{A})) \otimes E_\lambda)
\end{array}
\]

Let \(G = \text{GL}_n / \mathbb{Q} \) and \(b_n = \lfloor n^2 / 4 \rfloor \). As a \(G(\mathbb{A}_f) \times \pi_0(G_\infty) \)-module we have a multiplicity free decomposition:

\[
H^{b_n}_{\text{cusp}}(S^G, \mathcal{E}_\lambda) = \bigoplus H^{b_n}_{\text{cusp}}(S^G, \mathcal{E}_\lambda)[\Pi_f \times \epsilon]
\]
Cuspidal cohomology is defined by the diagram:

\[
\begin{array}{ccc}
H^\bullet(S^G, \xi_\lambda) & \longrightarrow & H^\bullet(g_\infty, K_\infty^0; C^\infty(G(\mathbb{Q}) \backslash G(\mathbb{A})) \otimes E_\lambda) \\
\uparrow & & \uparrow \\
H^\bullet_{\text{cusp}}(S^G, \xi_\lambda) & \longrightarrow & H^\bullet(g_\infty, K_\infty^0; C^\infty_{\text{cusp}}(G(\mathbb{Q}) \backslash G(\mathbb{A})) \otimes E_\lambda)
\end{array}
\]

Let \(G = \text{GL}_n/\mathbb{Q} \) and \(b_n = \lfloor n^2/4 \rfloor \). As a \(G(\mathbb{A}_f) \times \pi_0(G_\infty) \)-module we have a multiplicity free decomposition:

\[
H^\bullet_{\text{cusp}}(S^G, \xi_\lambda) = \bigoplus H^\bullet_{\text{cusp}}(S^G, \xi_\lambda)[\prod_f \times \epsilon]
\]
For brevity, let $M = S_{K_f}^G$, and let \bar{M} be the Borel-Serre compactification. Here are a few details:

- $\bar{M} = M \cup \partial \bar{M}$, where the ‘boundary’ $\partial \bar{M}$ is stratified as $\partial \bar{M} = \bigcup_P \partial_P M$, the union running over conjugacy classes of parabolic \mathbb{Q}-subgroups P of G.
- \bar{M} is a manifold with corners.
- M is the interior of \bar{M} and the inclusion $M \hookrightarrow \bar{M}$ is a homotopy equivalence, hence, $H^\bullet(M, \mathcal{E}) = H^\bullet(\bar{M}, \mathcal{E})$.
For brevity, let $M = S^G_K$, and let \tilde{M} be the Borel-Serre compactification. Here are a few details:

- $\tilde{M} = M \cup \partial \tilde{M}$, where the ‘boundary’ $\partial \tilde{M}$ is stratified as $\partial \tilde{M} = \bigcup_P \partial_P M$, the union running over conjugacy classes of parabolic \mathbb{Q}-subgroups P of G.
- \tilde{M} is a manifold with corners.
- M is the interior of \tilde{M} and the inclusion $M \hookrightarrow \tilde{M}$ is a homotopy equivalence, hence, $H^\bullet(M, \mathcal{E}) = H^\bullet(\tilde{M}, \mathcal{E})$.
For brevity, let $M = S^G_K$, and let \tilde{M} be the Borel-Serre compactification. Here are a few details:

- $\tilde{M} = M \cup \partial \tilde{M}$, where the ‘boundary’ $\partial \tilde{M}$ is stratified as $\partial \tilde{M} = \bigcup_P \partial_P M$, the union running over conjugacy classes of parabolic \mathbb{Q}-subgroups P of G.
- \tilde{M} is a manifold with corners.
- M is the interior of \tilde{M} and the inclusion $M \hookrightarrow \tilde{M}$ is a homotopy equivalence, hence, $H^\bullet(M, \mathcal{E}) = H^\bullet(\tilde{M}, \mathcal{E})$.

A. Raghuram
For brevity, let $M = S^G_{K_f}$, and let \bar{M} be the Borel-Serre compactification. Here are a few details:

- $\bar{M} = M \cup \partial \bar{M}$, where the ‘boundary’ $\partial \bar{M}$ is stratified as $\partial \bar{M} = \bigcup_P \partial_P M$, the union running over conjugacy classes of parabolic \mathbb{Q}-subgroups P of G.
- \bar{M} is a manifold with corners.
- M is the interior of \bar{M} and the inclusion $M \hookrightarrow \bar{M}$ is a homotopy equivalence, hence, $H^\bullet(M, \mathcal{E}) = H^\bullet(\bar{M}, \mathcal{E})$.
For brevity, let $M = S^G_K$, and let \tilde{M} be the Borel-Serre compactification. Here are a few details:

- $\tilde{M} = M \cup \partial \tilde{M}$, where the ‘boundary’ $\partial \tilde{M}$ is stratified as $\partial \tilde{M} = \bigcup_P \partial_P M$, the union running over conjugacy classes of parabolic \mathbb{Q}-subgroups P of G.
- \tilde{M} is a manifold with corners.
- M is the interior of \tilde{M} and the inclusion $M \hookrightarrow \tilde{M}$ is a homotopy equivalence, hence, $H^\bullet(M, \mathcal{E}) = H^\bullet(\tilde{M}, \mathcal{E})$.
A long exact sequence

A fundamental long exact sequence associated to the pair $(\widetilde{M}, \partial \widetilde{M})$ is

$$
\cdots \longrightarrow H_c^i(M, \mathcal{E}) \overset{\iota^*}{\longrightarrow} H^i(\widetilde{M}, \mathcal{E}) \overset{r^*}{\longrightarrow} H^i(\partial \widetilde{M}, \mathcal{E}) \longrightarrow H_{c}^{i+1}(M, \mathcal{E}) \longrightarrow \cdots
$$
What is Eisenstein Cohomology?

- Eisenstein cohomology gets you back into the manifold S^K_f from the boundary ∂S^K_f:

$$
\cdots \to H_c^i(M, \mathcal{E}) \to H^i(\bar{M}, \mathcal{E}) \xrightarrow{r^*} H^i(\partial \bar{M}, \mathcal{E}) \xrightarrow{\text{Eis}^*} \cdots
$$

- Eisenstein cohomology is the image of global cohomology in the cohomology of the boundary

$$
H^i_{\text{Eis}}(S^K, \mathcal{E}) = \text{Image}(H^i(S^K, \mathcal{E}) \to H^i(\partial S^K, \mathcal{E})).
$$

- Eisenstein cohomology consists of cohomology classes represented by cocycles built out of Eisenstein series.
What is Eisenstein Cohomology?

- Eisenstein cohomology gets you back into the manifold $S^G_{K_f}$ from the boundary $\partial S^G_{K_f}$:

\[
\cdots \rightarrow H^i_c(M, \mathcal{E}) \rightarrow H^i(\tilde{M}, \mathcal{E}) \xrightarrow{r^*} H^i(\partial \tilde{M}, \mathcal{E}) \rightarrow \text{Eis}^* \rightarrow \cdots
\]

- Eisenstein cohomology is the image of global cohomology in the cohomology of the boundary

\[
H^i_{\text{Eis}}(S^G, \mathcal{E}) = \text{Image}(H^i(S^G, \mathcal{E}) \rightarrow H^i(\partial S^G, \mathcal{E})).
\]

- Eisenstein cohomology consists of cohomology classes represented by cocycles built out of Eisenstein series.
What is Eisenstein Cohomology?

• Eisenstein cohomology gets you back into the manifold $S^G_{K_f}$ from the boundary $\partial S^G_{K_f}$:

$$
\cdots \to H^i_c(M, \mathcal{E}) \to H^i(M, \mathcal{E}) \overset{r^*}{\to} H^i(\partial \tilde{M}, \mathcal{E}) \to \cdots
$$

• Eisenstein cohomology is the image of global cohomology in the cohomology of the boundary

$$
H^i_{\text{Eis}}(S^G, \mathcal{E}) = \text{Image}(H^i(S^G, \mathcal{E}) \to H^i(\partial S^G, \mathcal{E})).
$$

• Eisenstein cohomology consists of cohomology classes represented by cocycles built out of Eisenstein series.

A. Raghuram
What is Eisenstein Cohomology?

- Eisenstein cohomology gets you back into the manifold $S^G_{K_f}$ from the boundary $\partial S^G_{K_f}$:

$$
\cdots \rightarrow H^i_c(M, \mathcal{E}) \rightarrow H^i(M, \mathcal{E}) \rightarrow H^i(\bar{M}, \mathcal{E}) \rightarrow H^i(\partial \bar{M}, \mathcal{E}) \rightarrow \cdots
$$

- Eisenstein cohomology is the image of global cohomology in the cohomology of the boundary

$$
H^i_{Eis}(S^G, \mathcal{E}) = \text{Image}(H^i(S^G, \mathcal{E}) \rightarrow H^i(\partial S^G, \mathcal{E})).
$$

- Eisenstein cohomology consists of cohomology classes represented by cocycles built out of Eisenstein series.
Cohomology of the (maximal) boundary strata

Let $P = M_P U_P$ be a maximal proper parabolic subgroup.

$$H^\bullet(\partial_P S^G, \mathcal{E}_\lambda) = a \text{Ind}^{G(\mathbb{A}_f) \times \pi_0(G_\infty)}_{P(\mathbb{A}_f) \times \pi_0(P_\infty)}(H^\bullet(S^{M_P}, \mathcal{H}^\bullet(u_P, \mathcal{E}_\lambda)))$$

$$= \bigoplus_{w \in W_P} a \text{Ind}^{G(\mathbb{A}_f) \times \pi_0(G_\infty)}_{P(\mathbb{A}_f) \times \pi_0(P_\infty)}(H^\bullet - l(w)(S^{M_P}, \mathcal{E}_{w^\lambda})).$$
Let \(P = M_P U_P \) be a maximal proper parabolic subgroup.

\[
H^\bullet(\partial_P S^G, \mathcal{E}_\lambda) = \text{aInd}_{P(\mathbb{A}_f) \times \pi_0(P_\infty)}^{G(\mathbb{A}_f) \times \pi_0(G_\infty)}(H^\bullet(S^{M_P}, \mathcal{H}^\bullet(u_P, \mathcal{E}_\lambda)))
\]

\[
= \bigoplus_{w \in W_P} \text{aInd}_{P(\mathbb{A}_f) \times \pi_0(P_\infty)}^{G(\mathbb{A}_f) \times \pi_0(G_\infty)}(H^\bullet - l(w)(S^{M_P}, \mathcal{E}_{w \cdot \lambda})).
\]
Let $P = M_P U_P$ be a maximal proper parabolic subgroup.

$$H^\bullet(\partial_P S^G, \mathcal{E}_\lambda) = a \text{Ind}_{P(\mathbb{A}_f) \times \pi_0(\mathbb{P})}^{G(\mathbb{A}_f) \times \pi_0(G_{\infty})}(H^\bullet(S^{M_P}, \mathcal{H}^\bullet(u_P, \mathcal{E}_\lambda)))$$

$$= \bigoplus_{w \in W_P} a \text{Ind}_{P(\mathbb{A}_f) \times \pi_0(\mathbb{P})}^{G(\mathbb{A}_f) \times \pi_0(G_{\infty})}(H^\bullet-l(w)(S^{M_P}, \mathcal{E}_{w \cdot \lambda})).$$
So far: Representations induced from cohomological cuspidal representations appear in boundary cohomology.

We will see: The Eisenstein classes attached to sections of these induced representations carry arithmetic information about the associated Langlands L-functions.
A classical example

Automorphic L-functions

Periods of motives

Adumbrating the proofs

Gist of it...

- So far: Representations induced from cohomological cuspidal representations appear in boundary cohomology.
- We will see: The Eisenstein classes attached to sections of these induced representations carry arithmetic information about the associated Langlands L-functions.
So far: Representations induced from cohomological cuspidal representations appear in boundary cohomology.

We will see: The Eisenstein classes attached to sections of these induced representations carry arithmetic information about the associated Langlands L-functions.