A SURFACE IN ODD CHARACTERISTIC WITH DISCRETE AND NON-FINITELY GENERATED AUTOMORPHISM GROUP

KEIJI OGUISO

1. EXTENDED ABSTRACT OF MY TALK

In my talk, I have presented the following result with fairly complete proof. This result is much inspired by recent two remarkable works, due to Lesieutre [Le17] in which a 6-dimensional example as in Theorem 1.1(2), also over characteristic 2, is constructed, and due to Dinh and me [DO19] in which a complex surface example as in Theorem 1.1(2) is finally constructed.

Theorem 1.1. Let \mathbb{F}_p be the prime field of characteristic $p \geq 3$. Then:

1. Let k_0 be an algebraic closure of \mathbb{F}_p. Then for any smooth projective surface Y birational to a K3 surface over k_0 and for any field extension $k_0 \subset L$, the automorphism group $\text{Aut}(Y_L/L)$ is (discrete and) finitely generated.

2. Let k be an algebraically closed field such that $\mathbb{F}_p(t) \subset k$, where t is transcendental over \mathbb{F}_p. Then there is a smooth projective surface Y birational to some K3 surface, over k, such that $\text{Aut}(Y/k)$ is (discrete but) not finitely generated.

It is known that the automorphism group of a K3 surface, hence the automorphism group of any smooth projective surface birational to a K3 surface, is discrete. Indeed $H^0(S, T_S) = \{0\}$ for such surfaces.

Corollary 1.2. Let k be as in Theorem 1.1 (2). Then, for any integer d such that $d \geq 2$, there is a smooth projective variety Y_d of dim $Y_d = d$, defined over k, such that $\text{Aut}(Y_d/k)$ is discrete but not finitely generated.

Let S be a K3 surface defined over an algebraically closed field K. Sterk [St85] shows the finite generation of $\text{Aut}(S/K)$ when K is of characteristic zero by using the Torelli theorem for complex K3 surfaces. Then Lieblich and Maulik [LM18] shows the finite generation of $\text{Aut}(S/K)$ when K is of odd characteristic as Theorem 1.3 below. They reduce to characteristic zero when S is not supersingular (Theorem 1.3 (2)), while they use the crystalline Torelli theorem, which is not yet settled in characteristic 2, when S is supersingular.

Theorem 1.3. Let S be a K3 surface defined over an algebraically closed field K of odd characteristic. Then

1. $\text{Aut}(S/K)$ is finitely generated.

2. Assume in addition that S is not supersingular. Then there are a discrete valuation ring R with residue field K and fraction field $Q(R)$ of characteristic 0 and a

The author is supported by JSPS Grant-in-Aid (S) 15H05738, JSPS Grant-in-Aid (B) 15H03611, and by KIAS Scholar Program.
smooth projective morphism $\pi: X \to \text{Spec} R$ with special fiber S such that the specialization map

$$\text{Aut}(\tilde{S}/\tilde{K}) \to \text{Aut}(S/K)$$

has finite kernel and cokernel. Here \tilde{S} is the geometric generic fiber of π and \tilde{K} is an algebraic closure of the fractional field $Q(R)$, in particular, \tilde{S} is a K3 surface defined over an algebraically closed field \tilde{K} of characteristic zero.

So, K3 surfaces themselves can not be candidate surfaces with non-finitely generated automorphism groups. Our proof of Theorem 1.1 (2) is quite close to [DO19] and explicit. Indeed, we show that some K3 surface birational to the Kummer surface $Km(E \times F)$ such that the elliptic curves E and F are not isogeneous over k and E is defined by $y^2 = x(x - 1)(x - t)$, where $t \in k$ is transcendental over \mathbb{F}_p, satisfies the requirement of Theorem 1.1 (2).

We should emphasize that it remains completely open if there is a smooth projective rational surface S over a field k such that $\text{Aut}(S/k)$ is discrete but not finitely generated. This question is completely open even for $k = \mathbb{C}$.

Acknowledgements. I would like to thank Professors Laura DeMarco and Mattias Jonsson for their invitation to this wonderful conference with excellent atmosphere.

References

