Equivariant Minimal Model Program with a View Towards Algebraic and Arithmetic Dynamics

De-Qi Zhang

Department of Mathematics
National university of Singapore

24th May 2019

Simons Symposium on Algebraic, Complex, and Arithmetic Dynamics
We work over an algebraically closed field k of characteristic 0.

The focus of the talk will be on polarized or amplified endomorphisms of normal projective varieties.

This talk is based on the following joint works.

[**MZ18**] Meng and Zhang, Semi-group structure of all endomorphisms of a projective variety admitting a polarized endomorphism, arXiv:1806.05828

[**M17**] Meng, Building blocks of amplified endomorphisms of normal projective varieties, Mathematische Zeitschrift (to appear), arXiv:1712.08995

We work over an algebraically closed field k of characteristic 0.

The focus of the talk will be on polarized or amplified endomorphisms of normal projective varieties.

This talk is based on the following joint works.

We work over an algebraically closed field k of characteristic 0.

The focus of the talk will be on polarized or amplified endomorphisms of normal projective varieties.

This talk is based on the following joint works.

Introduction

We work over an algebraically closed field k of characteristic 0.

The focus of the talk will be on polarized or amplified endomorphisms of normal projective varieties.

This talk is based on the following joint works.

Definition of Polarized, or Int-Amplified Endomorphisms

Let X be a projective variety.

A $(\mathbb{R}$-Cartier) divisor on X is **nef** if $\deg D|_C = D.C \geq 0$ for every curve C on X.

A divisor D on X is called **big** if $D = H + E$ for an ample \mathbb{Q}-divisor H and effective divisor E.

Definition (Polarized, Amplified)

Let $f : X \rightarrow X$ be a surjective endomorphism of a projective variety, $q \in \mathbb{Z}_{> 1}$.

1. f is **numerically polarized** if $f^*L \equiv qL$ for ample Cartier divisor L.
2. f is **numerically quasi-polarized** if $f^*L \equiv qL$ for big Cartier divisor L.
3. f is **quasi-polarized** if $f^*L \sim qL$ for big Cartier divisor L.
4. f is **q-polarized** if $f^*L \sim qL$ for ample Cartier divisor L.
5. f is **int-amplified** if $f^*L - L = H$ for ample Cartier divisors L, H.
6. f is **amplified** if $f^*L - L = H$ for (not necessarily ample) Cartier divisor L and ample Cartier divisor H.

It turns out that the first 4 conditions above are equivalent.
Definition of Polarized, or Int-Amplified Endomorphisms

Let X be a projective variety.

A (\mathbb{R}-Cartier) divisor on X is **nef** if $\deg D|_C = D.C \geq 0$ for every curve C on X.

A divisor D on X is called **big** if $D = H + E$ for an ample \mathbb{Q}-divisor H and effective divisor E.

Definition (Polarized, Amplified)

Let $f : X \rightarrow X$ be a surjective endomorphism of a projective variety, $q \in \mathbb{Z}_{>1}$.

1. f is **numerically polarized** if $f^*L \equiv qL$ for ample Cartier divisor L.
2. f is **numerically quasi-polarized** if $f^*L \equiv qL$ for big Cartier divisor L.
3. f is **quasi-polarized** if $f^*L \sim qL$ for big Cartier divisor L.
4. f is **q-polarized** if $f^*L \sim qL$ for ample Cartier divisor L.
5. f is **int-amplified** if $f^*L - L = H$ for ample Cartier divisors L, H.
6. f is **amplified** if $f^*L - L = H$ for (not necessarily ample) Cartier divisor L and ample Cartier divisor H.

It turns out that the first 4 conditions above are equivalent.
Definition of Polarized, or Int-Amplified Endomorphisms

Let \(X \) be a projective variety.

A (\(\mathbb{R} \)-Cartier) divisor on \(X \) is \textbf{nef} if \(\deg D|_C = D.C \geq 0 \) for every curve \(C \) on \(X \).

A divisor \(D \) on \(X \) is called \textbf{big} if \(D = H + E \) for an ample \(\mathbb{Q} \)-divisor \(H \) and effective divisor \(E \).

Definition (Polarized, Amplified)

Let \(f : X \rightarrow X \) be a surjective endomorphism of a projective variety, \(q \in \mathbb{Z}_{>1} \).

1. \(f \) is \textbf{numerically polarized} if \(f^*L \equiv qL \) for ample Cartier divisor \(L \).
2. \(f \) is \textbf{numerically quasi-polarized} if \(f^*L \equiv qL \) for big Cartier divisor \(L \).
3. \(f \) is \textbf{quasi-polarized} if \(f^*L \sim qL \) for big Cartier divisor \(L \).
4. \(f \) is \textbf{q-polarized} if \(f^*L \sim qL \) for ample Cartier divisor \(L \).
5. \(f \) is \textbf{int-amplified} if \(f^*L - L = H \) for ample Cartier divisors \(L, H \).
6. \(f \) is \textbf{amplified} if \(f^*L - L = H \) for (not necessarily ample) Cartier divisor \(L \) and ample Cartier divisor \(H \).

It turns out that the first 4 conditions above are equivalent.
Definition of Polarized, or Int-Amplified Endomorphisms

Let X be a projective variety.

A (\mathbb{R}-Cartier) divisor on X is nef if $\deg D|_C = D.C \geq 0$ for every curve C on X.

A divisor D on X is called big if $D = H + E$ for an ample \mathbb{Q}-divisor H and effective divisor E.

Definition (Polarized, Amplified)

Let $f : X \to X$ be a surjective endomorphism of a projective variety, $q \in \mathbb{Z}_{>1}$.

1. f is numerically polarized if $f^*L \equiv qL$ for ample Cartier divisor L.
2. f is numerically quasi-polarized if $f^*L \equiv qL$ for big Cartier divisor L.
3. f is quasi-polarized if $f^*L \sim qL$ for big Cartier divisor L.
4. f is q-polarized if $f^*L \sim qL$ for ample Cartier divisor L.
5. f is int-amplified if $f^*L - L = H$ for ample Cartier divisors L, H.
6. f is amplified if $f^*L - L = H$ for (not necessarily ample) Cartier divisor L and ample Cartier divisor H.

It turns out that the first 4 conditions above are equivalent.
Definition of Polarized, or Int-Amplified Endomorphisms

Let X be a projective variety.

A $(\mathbb{R}\text{-Cartier})$ divisor on X is **nef** if $\deg D|_C = D.C \geq 0$ for every curve C on X. A divisor D on X is called **big** if $D = H + E$ for an ample \mathbb{Q}-divisor H and effective divisor E.

Definition (Polarized, Amplified)

Let $f : X \to X$ be a surjective endomorphism of a projective variety, $q \in \mathbb{Z}_{>1}$.

(1) f is **numerically polarized** if $f^*L \equiv qL$ for ample Cartier divisor L.

(2) f is **numerically quasi-polarized** if $f^*L \equiv qL$ for big Cartier divisor L.

(3) f is **quasi-polarized** if $f^*L \sim qL$ for big Cartier divisor L.

(4) f is **q-polarized** if $f^*L \sim qL$ for ample Cartier divisor L.

(5) f is **int-amplified** if $f^*L - L = H$ for ample Cartier divisors L, H.

(6) f is **amplified** if $f^*L - L = H$ for (not necessarily ample) Cartier divisor L and ample Cartier divisor H.

It turns out that the first 4 conditions above are equivalent.
Theorem (MZ16, MZ18; Polarized Endomorphism: Equivalence)

Suppose $f : X \rightarrow X$ is separable (this is the case if char $k = 0$). Then:

(1) If $f^* L \equiv qL$ for some \mathbb{R}-Cartier big divisor L, then $f^* H \sim qH$ for some ample Cartier (integral) divisor H.

(2) The first 4 conditions in the definition above are equivalent.

Proof. Apply below to $V = \text{NS}_\mathbb{Q}(X)$, $\varphi = f^*$, and nef divisor cone and pseudo effective divisor cone of X.

Proposition (MZ16; Cone-Preserving Map)

Let $\varphi : V \rightarrow V$ be an invertible linear map of a positive dimensional real vector space equipped with a norm. Assume $\varphi(C) = C$ for a convex cone $C \subseteq V$ such that C spans V and its closure \overline{C} contains no line. Let q be a positive number. Then the (i) and (ii) below are equivalent.

(1) $\varphi(u) = qu$ for some $u \in C^\circ$ (the interior part of C).

(2) There exists a constant $N > 0$, such that $\frac{||\varphi^i||}{q^i} < N$ for all $i \in \mathbb{Z}$.

Further, under the equivalent conditions (1) and (2), φ is a diagonalizable linear map with all eigenvalues of modulus q.
Theorem (MZ16, MZ18; Polarized Endomorphism: Equivalence)

Suppose $f : X \to X$ is separable (this is the case if $\text{char } k = 0$). Then:

1. If $f^* L \equiv qL$ for some \mathbb{R}-Cartier big divisor L, then $f^* H \sim qH$ for some ample Cartier (integral) divisor H.
2. The first 4 conditions in the definition above are equivalent.

Proof. Apply below to $V = \text{NS}_\mathbb{Q}(X)$, $\varphi = f^*$, and nef divisor cone and pseudo effective divisor cone of X.

Proposition (MZ16; Cone-Preserving Map)

Let $\varphi : V \to V$ be an invertible linear map of a positive dimensional real vector space equipped with a norm. Assume $\varphi(C) = C$ for a convex cone $C \subseteq V$ such that C spans V and its closure \overline{C} contains no line. Let q be a positive number. Then the (i) and (ii) below are equivalent.

1. $\varphi(u) = qu$ for some $u \in C^\circ$ (the interior part of C).
2. There exists a constant $N > 0$, such that $\frac{||\varphi^i||}{q^i} < N$ for all $i \in \mathbb{Z}$.

Further, under the equivalent conditions (1) and (2), φ is a diagonalizable linear map with all eigenvalues of modulus q.
Suppose $f: X \to X$ is separable (this is the case if $\text{char } k = 0$). Then:

1. If $f^* L \equiv qL$ for some \mathbb{R}-Cartier big divisor L, then $f^* H \sim qH$ for some ample Cartier (integral) divisor H.
2. The first 4 conditions in the definition above are equivalent.

Proof. Apply below to $V = \text{NS}_\mathbb{Q}(X)$, $\varphi = f^*$, and nef divisor cone and pseudo effective divisor cone of X.

Proposition (MZ16; Cone-Preserving Map)

Let $\varphi: V \to V$ be an invertible linear map of a positive dimensional real vector space equipped with a norm. Assume $\varphi(C) = C$ for a convex cone $C \subseteq V$ such that C spans V and its closure \overline{C} contains no line. Let q be a positive number. Then the (i) and (ii) below are equivalent.

1. $\varphi(u) = qu$ for some $u \in C^\circ$ (the interior part of C).
2. There exists a constant $N > 0$, such that $\frac{||\varphi^i||}{q^i} < N$ for all $i \in \mathbb{Z}$.

Further, under the equivalent conditions (1) and (2), φ is a diagonalizable linear map with all eigenvalues of modulus q.

De-Qi Zhang (NUS)

Equivariant Minimal Model Program with a View Towards Algebraic and Arithmetic Dynamics

24th May 2019

4 / 16
Theorem (MZ16, MZ18; Polarized Endomorphism: Equivalence)

Suppose $f : X \to X$ is separable (this is the case if $\text{char } k = 0$). Then:

1. If $f^* L \equiv q L$ for some \mathbb{R}-Cartier big divisor L, then $f^* H \sim q H$ for some ample Cartier (integral) divisor H.

2. The first 4 conditions in the definition above are equivalent.

Proof. Apply below to $V = \text{NS}_\mathbb{Q}(X)$, $\varphi = f^*$, and nef divisor cone and pseudo effective divisor cone of X.

Proposition (MZ16; Cone-Preserving Map)

Let $\varphi : V \to V$ be an invertible linear map of a positive dimensional real vector space equipped with a norm. Assume $\varphi(C) = C$ for a convex cone $C \subseteq V$ such that C spans V and its closure \overline{C} contains no line. Let q be a positive number. Then the (i) and (ii) below are equivalent.

1. $\varphi(u) = qu$ for some $u \in C^\circ$ (the interior part of C).

2. There exists a constant $N > 0$, such that $\frac{||\varphi^i||}{q^i} < N$ for all $i \in \mathbb{Z}$.

Further, under the equivalent conditions (1) and (2), φ is a diagonalizable linear map with all eigenvalues of modulus q.
Theorem (MZ16, MZ18; Polarized Endomorphism: Equivalence)

Suppose $f : X \to X$ is separable (this is the case if $\text{char } k = 0$). Then:

1. If $f^* L \equiv qL$ for some \mathbb{R}-Cartier big divisor L, then $f^* H \sim qH$ for some ample Cartier (integral) divisor H.
2. The first 4 conditions in the definition above are equivalent.

Proof. Apply below to $V = \text{NS}_\mathbb{Q}(X)$, $\varphi = f^*$, and nef divisor cone and pseudo effective divisor cone of X.

Proposition (MZ16; Cone-Preserving Map)

Let $\varphi : V \to V$ be an invertible linear map of a positive dimensional real vector space equipped with a norm. Assume $\varphi(C) = C$ for a convex cone $C \subseteq V$ such that C spans V and its closure \overline{C} contains no line. Let q be a positive number. Then the (i) and (ii) below are equivalent.

1. $\varphi(u) = qu$ for some $u \in C^\circ$ (the interior part of C).
2. There exists a constant $N > 0$, such that $\frac{||\varphi^i||}{q^i} < N$ for all $i \in \mathbb{Z}$.

Further, under the equivalent conditions (1) and (2), φ is a diagonalizable linear map with all eigenvalues of modulus q.
Suppose $f : X \rightarrow X$ is separable (this is the case if $\text{char } k = 0$). Then:

1. If $f^* L \equiv qL$ for some \mathbb{R}-Cartier big divisor L, then $f^* H \sim qH$ for some ample Cartier (integral) divisor H.
2. The first 4 conditions in the definition above are equivalent.

Proof. Apply below to $V = \text{NS}_\mathbb{Q}(X)$, $\varphi = f^*$, and nef divisor cone and pseudo effective divisor cone of X.

Proposition (MZ16; Cone-Preserving Map)

Let $\varphi : V \rightarrow V$ be an invertible linear map of a positive dimensional real vector space equipped with a norm. Assume $\varphi(C) = C$ for a convex cone $C \subseteq V$ such that C spans V and its closure \overline{C} contains no line. Let q be a positive number. Then the (i) and (ii) below are equivalent.

1. $\varphi(u) = qu$ for some $u \in C^\circ$ (the interior part of C).
2. There exists a constant $N > 0$, such that $\frac{||\varphi^i||}{q^i} < N$ for all $i \in \mathbb{Z}$.

Further, under the equivalent conditions (1) and (2), φ is a diagonalizable linear map with all eigenvalues of modulus q.
Theorem (MZ16, MZ18; Polarized Endomorphism: Equivalence)

Suppose \(f : X \to X \) is separable (this is the case if \(\text{char } k = 0 \)). Then:

1. If \(f^* L \equiv qL \) for some \(\mathbb{R} \)-Cartier big divisor \(L \), then \(f^* H \sim qH \) for some ample Cartier (integral) divisor \(H \).
2. The first 4 conditions in the definition above are equivalent.

Proof. Apply below to \(V = \text{NS}_\mathbb{Q} (X) \), \(\varphi = f^* \), and nef divisor cone and pseudo effective divisor cone of \(X \).

Proposition (MZ16; Cone-Preserving Map)

Let \(\varphi : V \to V \) be an invertible linear map of a positive dimensional real vector space equipped with a norm. Assume \(\varphi (C) = C \) for a convex cone \(C \subseteq V \) such that \(C \) spans \(V \) and its closure \(\overline{C} \) contains no line. Let \(q \) be a positive number. Then the (i) and (ii) below are equivalent.

1. \(\varphi (u) = qu \) for some \(u \in C^\circ \) (the interior part of \(C \)).
2. There exists a constant \(N > 0 \), such that \(\frac{||\varphi^i||}{q^i} < N \) for all \(i \in \mathbb{Z} \).

Further, under the equivalent conditions (1) and (2), \(\varphi \) is a diagonalizable linear map with all eigenvalues of modulus \(q \).
Definition (Q-Abelian Variety)

A variety X is \textbf{Q-abelian} if there is a quasi-étale (i.e., étale-in-codimension 1) finite surjective morphism $A \rightarrow X$ from an abelian variety A.

A result of Greb-Kebekus-Peternell [GKP16] (extending a result of Nakayama-Zhang [NZ10] to higher dimension) is used in the proof below.

Theorem (NZ10, GKP16, MZ16, M17; Non-Uniruled Case)

Let $f : X \rightarrow X$ be an int-amplified (resp. polarized) endomorphism of a normal projective variety X. Suppose \textbf{either one of} the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is \textbf{non-uniruled}, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then X is Q-abelian, and $f : X \rightarrow X$ lifts to an int-amplified (resp. polarized) endomorphism $f_A : A \rightarrow A$ of a quasi-étale abelian variety cover A of X.
Definition (Q-Abelian Variety)

A variety X is **Q-abelian** if there is a quasi-étale (i.e., étale-in-codimension 1) finite surjective morphism $A \rightarrow X$ from an abelian variety A.

A result of Greb-Kebekus-Peternell [GKP16] (extending a result of Nakayama-Zhang [NZ10] to higher dimension) is used in the proof below.

Theorem (NZ10, GKP16, MZ16, M17; Non-Uniruled Case)

Let $f : X \rightarrow X$ be an int-amplified (resp. polarized) endomorphism of a normal projective variety X. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is **non-uniruled**, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then X is Q-abelian, and $f : X \rightarrow X$ lifts to an int-amplified (resp. polarized) endomorphism $f_A : A \rightarrow A$ of a quasi-étale abelian variety cover A of X.
Definition (Q-Abelian Variety)

A variety X is **Q-abelian** if there is a quasi-étale (i.e., étale-in-codimension 1) finite surjective morphism $A \to X$ from an abelian variety A.

A result of Greb-Kebekus-Peternell [GKP16] (extending a result of Nakayama-Zhang [NZ10] to higher dimension) is used in the proof below.

Theorem (NZ10, GKP16, MZ16, M17; Non-Uniruled Case)

Let $f : X \to X$ be an int-amplified (resp. polarized) endomorphism of a normal projective variety X. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).
(ii) X is **non-uniruled**, i.e., X is not covered by rational curves.
(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then X is Q-abelian, and $f : X \to X$ lifts to an int-amplified (resp. polarized) endomorphism $f_A : A \to A$ of a quasi-étale abelian variety cover A of X.

De-Qi Zhang (NUS)
Non-Uniruled Variety with an Int-Amplified Endomorphism

Definition (Q-Abelian Variety)

A variety X is **Q-abelian** if there is a quasi-étale (i.e., étale-in-codimension 1) finite surjective morphism $A \to X$ from an abelian variety A.

A result of Greb-Kebekus-Peternell [GKP16] (extending a result of Nakayama-Zhang [NZ10] to higher dimension) is used in the proof below.

Theorem (NZ10, GKP16, MZ16, M17; Non-Uniruled Case)

Let $f : X \to X$ be an int-amplified (resp. polarized) endomorphism of a normal projective variety X. Suppose **either one of the following three conditions**.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is **non-uniruled**, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then X is Q-abelian, and $f : X \to X$ lifts to an int-amplified (resp. polarized) endomorphism $f_A : A \to A$ of a quasi-étale abelian variety cover A of X.
Non-Uniruled Variety with an Int-Amplified Endomorphism

Definition (Q-Abelian Variety)

A variety X is Q-abelian if there is a quasi-étale (i.e., étale-in-codimension 1) finite surjective morphism $A \rightarrow X$ from an abelian variety A.

A result of Greb-Kebekus-Peternell [GKP16] (extending a result of Nakayama-Zhang [NZ10] to higher dimension) is used in the proof below.

Theorem (NZ10, GKP16, MZ16, M17; Non-Uniruled Case)

Let $f : X \rightarrow X$ be an int-amplified (resp. polarized) endomorphism of a normal projective variety X. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is non-uniruled, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then X is Q-abelian, and $f : X \rightarrow X$ lifts to an int-amplified (resp. polarized) endomorphism $f_A : A \rightarrow A$ of a quasi-étale abelian variety cover A of X.
Theorem (MZ16, M17; Equivariant MMP)

Let \(f : X \to X \) be an int-amplified endomorphism of a normal projective variety with at worst \(\mathbb{Q} \)-factorial Kawamata log terminal singularities. Then there exist a finite-index submonoid \(G \) of \(\text{SEnd}(X) \), a \(\mathbb{Q} \)-abelian variety \(Y \), and a \(G \)-equivariant relative MMP:

\[
X = X_0 \to \cdots \to X_t = Y
\]

over \(Y \) (i.e. every \(g \in G = G_0 \) descends to \(g_i \in G_i \) on each \(X_i \)), such that:

1. There is a quasi-étale Galois cover \(A \to Y \) from an abelian variety \(A \) such that \(G_t \) lifts to a submonoid \(G_A \) of \(\text{SEnd}(A) \).
2. The rational map \(X_{t-1} \to X_t = Y \) is a Fano contraction (a morphism).
3. For any subset \(H \subseteq G \) and its descending \(H_Y \subseteq \text{SEnd}(Y) \), \(H \) acts via pullback on \(\text{NS}_{\mathbb{Q}}(X) \) or \(\text{NS}_{\mathbb{C}}(X) \) as commutative diagonal matrices with respect to a suitable basis if and only if so does \(H_Y \).

(Remark: “\(X \) is smooth rational connected" \(\Rightarrow \) \(Y = \text{pt.} \)"
Theorem (MZ16, M17; Equivariant MMP)

Let $f : X \to X$ be an int-amplified endomorphism of a normal projective variety with at worst \mathbb{Q}-factorial Kawamata log terminal singularities. Then there exist a finite-index submonoid G of $\text{SEnd}(X)$, a \mathbb{Q}-abelian variety Y, and a G-equivariant relative MMP:

$$X = X_0 \to \cdots \to X_t = Y$$

over Y (i.e. every $g \in G = G_0$ descends to $g_i \in G_i$ on each X_i), such that:

1. There is a quasi-étale Galois cover $A \to Y$ from an abelian variety A such that G_t lifts to a submonoid G_A of $\text{SEnd}(A)$.
2. The rational map $X_{t-1} \to X_t = Y$ is a Fano contraction (a morphism).
3. For any subset $H \subseteq G$ and its descending $H_Y \subseteq \text{SEnd}(Y)$, H acts via pullback on $\text{NS}_{\mathbb{Q}}(X)$ or $\text{NS}_{\mathbb{C}}(X)$ as commutative diagonal matrices with respect to a suitable basis if and only if so does H_Y.

(Remark: “X is smooth rational connected” \Rightarrow $Y = \text{pt.}$)
Equivariant MMP Relative to the Monoid $\text{SEnd}(X)$

Theorem (MZ16, M17; Equivariant MMP)

Let $f : X \to X$ be an int-amplified endomorphism of a normal projective variety with at worst \mathbb{Q}-factorial Kawamata log terminal singularities. Then there exist a finite-index submonoid G of $\text{SEnd}(X)$, a \mathbb{Q}-abelian variety Y, and a G-equivariant relative MMP:

$$X = X_0 \dasharrow \cdots \dasharrow X_t = Y$$

over Y (i.e. every $g \in G = G_0$ descends to $g_i \in G_i$ on each X_i), such that:

1. There is a quasi-étale Galois cover $A \to Y$ from an abelian variety A such that G_t lifts to a submonoid G_A of $\text{SEnd}(A)$.
2. The rational map $X_{t-1} \dasharrow X_t = Y$ is a Fano contraction (a morphism).
3. For any subset $H \subseteq G$ and its descending $H_Y \subseteq \text{SEnd}(Y)$, H acts via pullback on $\text{NS}_{\mathbb{Q}}(X)$ or $\text{NS}_{\mathbb{C}}(X)$ as commutative diagonal matrices with respect to a suitable basis if and only if so does H_Y.

(Remark: “X is smooth rational connected” \Rightarrow $Y = \text{pt.}$)
Theorem (MZ16, M17; Equivariant MMP)

Let \(f : X \to X \) be an int-amplified endomorphism of a normal projective variety with at worst \(\mathbb{Q} \)-factorial Kawamata log terminal singularities. Then there exist a finite-index submonoid \(G \) of \(\text{SEnd}(X) \), a \(\mathbb{Q} \)-abelian variety \(Y \), and a \(G \)-equivariant relative MMP:

\[
X = X_0 \dasharrow \cdots \dasharrow X_t = Y
\]

over \(Y \) (i.e. every \(g \in G = G_0 \) descends to \(g_i \in G_i \) on each \(X_i \)), such that:

1. There is a quasi-étale Galois cover \(A \to Y \) from an abelian variety \(A \) such that \(G_t \) lifts to a submonoid \(G_A \) of \(\text{SEnd}(A) \).
2. The rational map \(X_{t-1} \dasharrow X_t = Y \) is a Fano contraction (a morphism).
3. For any subset \(H \subseteq G \) and its descending \(H_Y \subseteq \text{SEnd}(Y) \), \(H \) acts via pullback on \(\text{NS}_\mathbb{Q}(X) \) or \(\text{NS}_\mathbb{C}(X) \) as commutative diagonal matrices with respect to a suitable basis if and only if so does \(H_Y \).

(Remark: "\(X \) is smooth rational connected" \(\Rightarrow \) \(Y = \text{pt.} \))
Equivariant MMP Relative to the Monoid $\text{SEnd}(X)$

Theorem (MZ16, M17; Equivariant MMP)

Let $f : X \to X$ be an int-amplified endomorphism of a normal projective variety with at worst \mathbb{Q}-factorial Kawamata log terminal singularities. Then there exist a finite-index submonoid G of $\text{SEnd}(X)$, a \mathbb{Q}-abelian variety Y, and a G-equivariant relative MMP:

$$X = X_0 \to \cdots \to X_t = Y$$

over Y (i.e. every $g \in G = G_0$ descends to $g_i \in G_i$ on each X_i), such that:

1. There is a quasi-étale Galois cover $A \to Y$ from an abelian variety A such that G_t lifts to a submonoid G_A of $\text{SEnd}(A)$.
2. The rational map $X_{t-1} \to X_t = Y$ is a Fano contraction (a morphism).
3. For any subset $H \subseteq G$ and its descending $H_Y \subseteq \text{SEnd}(Y)$, H acts via pullback on $\text{NS}_\mathbb{Q}(X)$ or $\text{NS}_\mathbb{C}(X)$ as commutative diagonal matrices with respect to a suitable basis if and only if so does H_Y.

(Remark: “X is smooth rational connected” \Rightarrow $Y = \text{pt.}$)
Theorem (MZ16, M17; Equivariant MMP)

Let $f : X \to X$ be an int-amplified endomorphism of a normal projective variety with at worst \mathbb{Q}-factorial Kawamata log terminal singularities. Then there exist a finite-index submonoid G of $\text{SEnd}(X)$, a \mathbb{Q}-abelian variety Y, and a G-equivariant relative MMP:

$$X = X_0 \to \cdots \to X_t = Y$$

over Y (i.e. every $g \in G = G_0$ descends to $g_i \in G_i$ on each X_i), such that:
(1) There is a quasi-étale Galois cover $A \to Y$ from an abelian variety A such that G_t lifts to a submonoid G_A of $\text{SEnd}(A)$.
(2) The rational map $X_{t-1} \to X_t = Y$ is a Fano contraction (a morphism).
(3) For any subset $H \subseteq G$ and its descending $H_Y \subseteq \text{SEnd}(Y)$, H acts via pullback on $\text{NS}_\mathbb{Q}(X)$ or $\text{NS}_\mathbb{C}(X)$ as commutative diagonal matrices with respect to a suitable basis if and only if so does H_Y.

(Remark: “X is smooth rational connected” \Rightarrow $Y = \text{pt.}$)
Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f. Then there are a finite-index submonoid $G \leq \text{SEnd}(X)$ such that:

$$G^*|_{\text{NS}_\mathbb{Q}(X)}$$

is a commutative diagonal monoid with respect to a suitable \mathbb{Q}-basis B of $\text{NS}_\mathbb{Q}(X)$.

Further, for every g in G, the representation matrix $[g^*|_{\text{NS}_\mathbb{Q}(X)}]_B$ relative to B satisfies:

$$[g^*|_{\text{NS}_\mathbb{Q}(X)}]_B = \text{diag}[q_1, q_2, \ldots]$$

with integers $q_i \geq 1$.
Applications of EMMP: Diagonalization

Theorem (M16, MZ18; Diagonalization)

Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f. Then there are a finite-index submonoid $G \leq \text{SEnd}(X)$ such that:

$$G^*|_{\text{NS}_\mathbb{Q}(X)}$$

is a commutative diagonal monoid with respect to a suitable \mathbb{Q}-basis B of $\text{NS}_\mathbb{Q}(X)$.

Further, for every g in G, the representation matrix $[g^*|_{\text{NS}_\mathbb{Q}(X)}]_B$ relative to B satisfies:

$$[g^*|_{\text{NS}_\mathbb{Q}(X)}]_B = \text{diag}[q_1, q_2, \ldots]$$

with integers $q_i \geq 1$.

De-Qi Zhang (NUS)
Equivariant Minimal Model Program with a View Towards Algebraic and Arithmetic Dynamics
24th May 2019
Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f. Then there are a finite-index submonoid $G \subseteq \text{SEnd}(X)$ such that:

$$G^*|_{\text{NS}_Q(X)}$$

is a commutative diagonal monoid with respect to a suitable \mathbb{Q}-basis B of $\text{NS}_Q(X)$.

Further, for every g in G, the representation matrix $[g^*|_{\text{NS}_Q(X)}]_B$ relative to B satisfies:

$$[g^*|_{\text{NS}_Q(X)}]_B = \text{diag}[q_1, q_2, \ldots]$$

with integers $q_i \geq 1$.

De-Qi Zhang (NUS)
In general, the product of polarized (resp. int-amplified) endomorphisms of a variety X, may not be polarized (resp. int-amplified) anymore; see the example in the next slide.

However, we have the following result, which answers affirmatively (up to finite index) a question of Xinyi Yuan and Shou-Wu Zhang (2013) for rationally connected varieties.

Theorem (MZ18; Product of Polarized or Int-Amplified Maps)

Let X be a rationally connected smooth projective variety. Then there is a constant $M \geq 1$ (depending only on X) such that if $f_i : X \to X$ ($i = 1, \ldots, s$) are polarized (resp. int-amplified) endomorphisms then the composition

$$f_1^M \circ \cdots \circ f_s^M$$

is again polarized (resp. int-amplified).
Applications of EMMP: Product of Polarized or Int-Amplified Maps

In general, the product of polarized (resp. int-amplified) endomorphisms of a variety X, may not be polarized (resp. int-amplified) anymore; see the example in the next slide.

However, we have the following result, which answers affirmatively (up to finite index) a question of Xinyi Yuan and Shou-Wu Zhang (2013) for rationally connected varieties.

Theorem (MZ18; Product of Polarized or Int-Amplified Maps)

Let X be a rationally connected smooth projective variety. Then there is a constant $M \geq 1$ (depending only on X) such that if $f_i : X \to X$ ($i = 1, \ldots, s$) are polarized (resp. int-amplified) endomorphisms then the composition

$$f_1^M \circ \cdots \circ f_s^M$$

is again polarized (resp. int-amplified).
In general, the product of polarized (resp. int-amplified) endomorphisms of a variety X, may not be polarized (resp. int-amplified) anymore; see the example in the next slide.

However, we have the following result, which answers affirmatively (up to finite index) a question of Xinyi Yuan and Shou-Wu Zhang (2013) for rationally connected varieties.

Theorem (MZ18; Product of Polarized or Int-Amplified Maps)

Let X be a rationally connected smooth projective variety. Then there is a constant $M \geq 1$ (depending only on X) such that if $f_i : X \to X$ ($i = 1, \ldots, s$) are polarized (resp. int-amplified) endomorphisms then the composition $f_1^M \circ \cdots \circ f_s^M$ is again polarized (resp. int-amplified).
Applications of EMMP: Product of Polarized or Int-Amplified Maps

In general, the product of polarized (resp. int-amplified) endomorphisms of a variety X, may not be polarized (resp. int-amplified) anymore; see the example in the next slide.

However, we have the following result, which answers affirmatively (up to finite index) a question of Xinyi Yuan and Shou-Wu Zhang (2013) for rationally connected varieties.

Theorem (MZ18; Product of Polarized or Int-Amplified Maps)

Let X be a rationally connected smooth projective variety. Then there is a constant $M \geq 1$ (depending only on X) such that if $f_i : X \to X$ ($i = 1, \ldots, s$) are polarized (resp. int-amplified) endomorphisms then the composition

$$f_1^M \circ \cdots \circ f_s^M$$

is again polarized (resp. int-amplified).
Applications of EMMP: $\text{Aut}(X)$

Theorem (MZ16, MZ18; $\text{Aut}(X)$)

Let X be a rationally connected smooth projective variety. Suppose X admits an int-amplified (or polarized) endomorphism. Then we have:

1. $\text{Aut}(X)/\text{Aut}_0(X)$ is a finite group. More precisely, $\text{Aut}(X)$ is a linear algebraic group (with only finitely many connected components).

2. Every amplified endomorphism of X is int-amplified.

3. X has no automorphism of positive entropy (nor amplified automorphism).

Before state more applications of our Equivariant Minimal Model Program (EMMP), we recall KSC below:
Applications of EMMP: $\text{Aut}(X)$

Theorem (MZ16, MZ18; Aut(X))

Let X be a rationally connected smooth projective variety. Suppose X admits an int-amplified (or polarized) endomorphism. Then we have:

1. $\text{Aut}(X)/\text{Aut}_0(X)$ is a finite group. More precisely, $\text{Aut}(X)$ is a linear algebraic group (with only finitely many connected components).

2. Every amplified endomorphism of X is int-amplified.

3. X has no automorphism of positive entropy (nor amplified automorphism).

Before state more applications of our Equivariant Minimal Model Program (EMMP), we recall KSC below:
Applications of EMMP: $\text{Aut}(X)$

Theorem (MZ16, MZ18; $\text{Aut}(X)$)

Let X be a rationally connected smooth projective variety. Suppose X admits an int-amplified (or polarized) endomorphism. Then we have:

1. $\text{Aut}(X)/\text{Aut}_0(X)$ is a finite group. More precisely, $\text{Aut}(X)$ is a linear algebraic group (with only finitely many connected components).
2. Every amplified endomorphism of X is int-amplified.
3. X has no automorphism of positive entropy (nor amplified automorphism).

Before state more applications of our Equivariant Minimal Model Program (EMMP), we recall KSC below:
Applications of EMMP: $\text{Aut}(X)$

Theorem (MZ16, MZ18; $\text{Aut}(X)$)

Let X be a rationally connected smooth projective variety. Suppose X admits an int-amplified (or polarized) endomorphism. Then we have:

1. $\text{Aut}(X)/\text{Aut}_0(X)$ is a finite group. More precisely, $\text{Aut}(X)$ is a linear algebraic group (with only finitely many connected components).
2. Every amplified endomorphism of X is int-amplified.
3. X has no automorphism of positive entropy (nor amplified automorphism).

Before stating more applications of our Equivariant Minimal Model Program (EMMP), we recall KSC below:
Applications of EMMP: $\text{Aut}(X)$

Theorem (MZ16, MZ18; Aut(X))

Let X be a rationally connected smooth projective variety. Suppose X admits an int-amplified (or polarized) endomorphism. Then we have:

1. $\text{Aut}(X)/\text{Aut}_0(X)$ is a finite group. More precisely, $\text{Aut}(X)$ is a linear algebraic group (with only finitely many connected components).

2. Every amplified endomorphism of X is int-amplified.

3. X has no automorphism of positive entropy (nor amplified automorphism).

Before state more applications of our Equivariant Minimal Model Program (EMMP), we recall KSC below:
Let $f : X \rightarrow X$ be a surjective endomorphism of a projective variety over $\overline{\mathbb{Q}}$. Let $h_X : X(\overline{\mathbb{Q}}) \rightarrow [0, \infty)$ be a Weil height on X relative to an ample divisor, and $h_X^+ = \max\{1, h_X\}$. The Arithmetic degree of f at a point $P \in X(\overline{\mathbb{Q}})$ is the quantity

$$\alpha_f(P) = \lim_{s \to \infty} h^+(f^s(P)))^{1/s}.$$

Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let $P \in X(\overline{\mathbb{Q}})$. Suppose that the (forward) orbit $\{f^s(P) \mid s \geq 1\}$ is Zariski dense in X. Then

$$\alpha_f(P) = d_1(f)$$

where $d_1(f)$ is the first dynamical degree of f, i.e., the spectral radius of $f^*|_{NS_{\mathbb{C}}(X)}$. (Kawaguchi-Silverman 2012 proved: $\alpha_f(P) \leq d_1(f)$ always holds.)

The original KSC also includes the case of rational maps.
The Kawaguchi-Silverman Conjecture = KSC

Let \(f : X \to X \) be a surjective endomorphism of a projective variety over \(\overline{\mathbb{Q}} \). Let

\[
h_X : X(\overline{\mathbb{Q}}) \to [0, \infty)
\]

be a Weil height on \(X \) relative to an ample divisor, and \(h_X^+ = \max\{1, h_X\} \). The **Arithmetic degree** of \(f \) at a point \(P \in X(\overline{\mathbb{Q}}) \) is the quantity

\[
\alpha_f(P) = \lim_{s \to \infty} \left(h^+(f^s(P)) \right)^{1/s}.
\]

Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let \(P \in X(\overline{\mathbb{Q}}) \). Suppose that the (forward) orbit \(\{ f^s(P) \mid s \geq 1 \} \) is Zariski dense in \(X \). Then

\[
\alpha_f(P) = d_1(f)
\]

where \(d_1(f) \) is the first dynamical degree of \(f \), i.e., the spectral radius of \(f^*|_{NS_C(X)} \). (Kawaguchi-Silverman 2012 proved: \(\alpha_f(P) \leq d_1(f) \) always holds.)

The original KSC also includes the case of rational maps.
Let $f : X \to X$ be a surjective endomorphism of a projective variety over $\overline{\mathbb{Q}}$. Let
$$h_X : X(\overline{\mathbb{Q}}) \to [0, \infty)$$
be a Weil height on X relative to an ample divisor, and $h_X^+ = \max\{1, h_X\}$. The **Arithmetic degree** of f at a point $P \in X(\overline{\mathbb{Q}})$ is the quantity
$$\alpha_f(P) = \lim_{s \to \infty} (h^+(f^s(P)))^{1/s}.$$

Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let $P \in X(\overline{\mathbb{Q}})$. Suppose that the (forward) orbit $\{f^s(P) \mid s \geq 1\}$ is Zariski dense in X. Then
$$\alpha_f(P) = d_1(f)$$
where $d_1(f)$ is the first dynamical degree of f, i.e., the spectral radius of $f^*|_{\text{NS}_C(X)}$. (Kawaguchi-Silverman 2012 proved: $\alpha_f(P) \leq d_1(f)$ always holds.)

The original KSC also includes the case of rational maps.
Let $f : X \to X$ be a surjective endomorphism of a projective variety over $\overline{\mathbb{Q}}$. Let

$$h_X : X(\overline{\mathbb{Q}}) \to [0, \infty)$$

be a Weil height on X relative to an ample divisor, and $h_X^+ = \max\{1, h_X\}$. The **Arithmetic degree** of f at a point $P \in X(\overline{\mathbb{Q}})$ is the quantity

$$\alpha_f(P) = \lim_{s \to \infty} h^+(f^s(P)))^{1/s}.$$

Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let $P \in X(\overline{\mathbb{Q}})$. Suppose that the (forward) orbit $\{f^s(P) | s \geq 1\}$ is Zariski dense in X. Then

$$\alpha_f(P) = d_1(f)$$

where $d_1(f)$ is the first dynamical degree of f, i.e., the spectral radius of $f^*|_{\text{NS}_C(X)}$. (Kawaguchi-Silverman 2012 proved: $\alpha_f(P) \leq d_1(f)$ always holds.)

The original KSC also includes the case of rational maps.
Let $f : X \to X$ be a surjective endomorphism of a projective variety over $\overline{\mathbb{Q}}$. Let

$$h_X : X(\overline{\mathbb{Q}}) \to [0, \infty)$$

be a Weil height on X relative to an ample divisor, and $h_X^+ = \max\{1, h_X\}$. The **Arithmetic degree** of f at a point $P \in X(\overline{\mathbb{Q}})$ is the quantity

$$\alpha_f(P) = \lim_{s \to \infty} h^+(f^s(P))^{1/s}.$$

Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let $P \in X(\overline{\mathbb{Q}})$. Suppose that the (forward) orbit $\{f^s(P) \mid s \geq 1\}$ is Zariski dense in X. Then

$$\alpha_f(P) = d_1(f)$$

where $d_1(f)$ is the first dynamical degree of f, i.e., the spectral radius of $f^*|_{NS_C(X)}$. (Kawaguchi-Silverman 2012 proved: $\alpha_f(P) \leq d_1(f)$ always holds.)

The original KSC also includes the case of rational maps.
Let $f : X \to X$ be a surjective endomorphism of a projective variety over $\overline{\mathbb{Q}}$. Let

$$h_X : X(\overline{\mathbb{Q}}) \to [0, \infty)$$

be a Weil height on X relative to an ample divisor, and $h_X^+ = \max\{1, h_X\}$. The **Arithmetic degree** of f at a point $P \in X(\overline{\mathbb{Q}})$ is the quantity

$$\alpha_f(P) = \lim_{s \to \infty} h^+(f^s(P)))^{1/s}.$$

Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let $P \in X(\overline{\mathbb{Q}})$. Suppose that the (forward) orbit $\{f^s(P) \mid s \geq 1\}$ is Zariski dense in X. Then

$$\alpha_f(P) = d_1(f)$$

where $d_1(f)$ is the first dynamical degree of f, i.e., the spectral radius of $f^*|_{NSC(X)}$. (Kawaguchi-Silverman 2012 proved: $\alpha_f(P) \leq d_1(f)$ always holds.)

The original KSC also includes the case of rational maps.
Let \(f : X \to X \) be a surjective endomorphism of a projective variety over \(\overline{\mathbb{Q}} \). Let
\[
h_X : X(\overline{\mathbb{Q}}) \to [0, \infty)
\]
be a Weil height on \(X \) relative to an ample divisor, and \(h^+_X = \max\{1, h_X\} \). The **Arithmetic degree** of \(f \) at a point \(P \in X(\overline{\mathbb{Q}}) \) is the quantity
\[
\alpha_f(P) = \lim_{s \to \infty} h^+(f^s(P))^{1/s}.
\]
Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let \(P \in X(\overline{\mathbb{Q}}) \). Suppose that the (forward) orbit \(\{f^s(P) \mid s \geq 1\} \) is Zariski dense in \(X \). Then
\[
\alpha_f(P) = d_1(f)
\]
where \(d_1(f) \) is the first dynamical degree of \(f \), i.e., the spectral radius of
\(f^*|_{\text{NS}_C(X)} \). (Kawaguchi-Silverman 2012 proved: \(\alpha_f(P) \leq d_1(f) \) always holds.)

The original KSC also includes the case of rational maps.
Let $f : X \to X$ be a surjective endomorphism of a projective variety over $\overline{\mathbb{Q}}$. Let
\[h_X : X(\overline{\mathbb{Q}}) \to [0, \infty) \]
be a Weil height on X relative to an ample divisor, and $h_X^+ = \max\{1, h_X\}$. The **Arithmetic degree** of f at a point $P \in X(\overline{\mathbb{Q}})$ is the quantity
\[\alpha_f(P) = \lim_{s \to \infty} h^+((f^s(P)))^{1/s}. \]
Here the existence of the above limit is proved by Kawaguchi-Silverman 2012.

Conjecture (KSC, Kawaguchi-Silverman 2012)

Let $P \in X(\overline{\mathbb{Q}})$. Suppose that the (forward) orbit $\{f^s(P) \mid s \geq 1\}$ is Zariski dense in X. Then
\[\alpha_f(P) = d_1(f) \]
where $d_1(f)$ is the first dynamical degree of f, i.e., the spectral radius of $f^*|_{NS_C(X)}$. (Kawaguchi-Silverman 2012 proved: $\alpha_f(P) \leq d_1(f)$ always holds.) The original KSC also includes the case of rational maps.
Theorem (M17, MZ18; KSC when X is non-uniruled)

Let X be a normal projective variety with an int-amplified endomorphism. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).
(ii) X is non-uniruled, i.e., X is not covered by rational curves.
(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then every surjective endomorphism $g : X \to X$ satisfies the KSC.

Indeed, X is a \mathbb{Q}-abelian variety and g lifts to an endomorphism $g_A : A \to A$ of a quasi-étale abelian variety cover A of X.
Theorem (M17, MZ18; KSC when X is non-uniruled)

Let X be a normal projective variety with an int-amplified endomorphism. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is non-uniruled, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then every surjective endomorphism $g : X \to X$ satisfies the KSC.

Indeed, X is a \mathbb{Q}-abelian variety and g lifts to an endomorphism $g_A : A \to A$ of a quasi-étale abelian variety cover A of X.

Theorem (M17, MZ18; KSC when X is non-uniruled)

Let X be a normal projective variety with an int-amplified endomorphism. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is non-uniruled, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then every surjective endomorphism $g : X \to X$ satisfies the KSC.

Indeed, X is a \mathbb{Q}-abelian variety and g lifts to an endomorphism $g_A : A \to A$ of a quasi-étale abelian variety cover A of X.
Theorem (M17, MZ18; KSC when X is non-uniruled)

Let X be a normal projective variety with an int-amplified endomorphism. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is non-uniruled, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then every surjective endomorphism $g : X \to X$ satisfies the KSC.

Indeed, X is a \mathbb{Q}-abelian variety and g lifts to an endomorphism $g_A : A \to A$ of a quasi-étale abelian variety cover A of X.
Applications of EMMP: Kawaguchi-Silverman Conjecture, Non-Uniruled Case

Theorem (M17, MZ18; KSC when X is non-uniruled)

Let X be a normal projective variety with an int-amplified endomorphism. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).
(ii) X is non-uniruled, i.e., X is not covered by rational curves.
(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then every surjective endomorphism $g : X \to X$ satisfies the KSC.

Indeed, X is a \mathbb{Q}-abelian variety and g lifts to an endomorphism $g_A : A \to A$ of a quasi-étale abelian variety cover A of X.
Theorem (M17, MZ18; KSC when X is non-uniruled)

Let X be a normal projective variety with an int-amplified endomorphism. Suppose either one of the following three conditions.

(i) X has at worst Kawamata log terminal singularities and the canonical divisor K_X is pseudo-effective (i.e., a limit of effective divisors).

(ii) X is non-uniruled, i.e., X is not covered by rational curves.

(iii) the Kodaira dimension $\kappa(X) \geq 0$.

Then every surjective endomorphism $g : X \to X$ satisfies the KSC.

Indeed, X is a \mathbb{Q}-abelian variety and g lifts to an endomorphism $g_A : A \to A$ of a quasi-étale abelian variety cover A of X.
Applications of EMMP: Kawaguchi-Silverman Conjecture, Rationally Connected Threefolds Case

Theorem (Meng-Zhang, forthcoming; KSC for Rat Conn Variety)

Suppose X is a smooth projective threefold over $\overline{\mathbb{Q}}$ such that

1. X is rationally connected (e.g. birational to a Fano variety), i.e., every two points are connected by a rational curve, and
2. X admits an int-amplified endomorphism.

Then every surjective endomorphism g of X (which is not necessarily amplified) satisfies the Kawaguchi-Silverman conjecture. Namely,

$$\alpha_g(P) = d_1(g)$$

where P is any point in X with Zariski-dense orbit, $\alpha_g(P)$ is the arithmetic degree of g at P, and $d_1(g)$ is the first dynamical degree of g, i.e., the spectral radius of $g^*|_{\text{NS}_C(X)}$.

De-Qi Zhang (NUS) Equivariant Minimal Model Program with a View Towards Algebraic and Arithmetic Dynamics 24th May 2019 12/16
Theorem (Meng-Zhang, forthcoming; KSC for Rat Conn Variety)

Suppose X is a smooth projective threefold over $\overline{\mathbb{Q}}$ such that
(1) X is rationally connected (e.g. birational to a Fano variety), i.e., every two points are connected by a rational curve, and
(2) X admits an int-amplified endomorphism.

Then every surjective endomorphism g of X (which is not necessarily amplified) satisfies the Kawaguchi-Silverman conjecture. Namely,

$$\alpha_g(P) = d_1(g)$$

where P is any point in X with Zariski-dense orbit, $\alpha_g(P)$ is the arithmetic degree of g at P, and $d_1(g)$ is the first dynamical degree of g, i.e., the spectral radius of $g^*|_{\text{NS}_C(X)}$.
Theorem (Meng-Zhang, forthcoming; KSC for Rat Conn Variety)

Suppose X is a smooth projective threefold over $\overline{\mathbb{Q}}$ such that
(1) X is rationally connected (e.g. birational to a Fano variety), i.e., every two points are connected by a rational curve, and
(2) X admits an int-amplified endomorphism.

Then every surjective endomorphism g of X (which is not necessarily amplified) satisfies the Kawaguchi-Silverman conjecture. Namely,

$$\alpha_g(P) = d_1(g)$$

where P is any point in X with Zariski-dense orbit, $\alpha_g(P)$ is the arithmetic degree of g at P, and $d_1(g)$ is the first dynamical degree of g, i.e., the spectral radius of $g^*|_{NS_C(X)}$.
Theorem (Meng-Zhang, forthcoming; KSC for Rat Conn Variety)

Suppose X is a smooth projective threefold over $\overline{\mathbb{Q}}$ such that
(1) X is rationally connected (e.g. birational to a Fano variety), i.e., every two points are connected by a rational curve, and
(2) X admits an int-amplified endomorphism.

Then every surjective endomorphism g of X (which is not necessarily amplified) satisfies the Kawaguchi-Silverman conjecture. Namely,

$$\alpha_g(P) = d_1(g)$$

where P is any point in X with Zariski-dense orbit, $\alpha_g(P)$ is the arithmetic degree of g at P, and $d_1(g)$ is the first dynamical degree of g, i.e., the spectral radius of $g^*|_{\text{NS}_C(X)}$.
Suppose X is a smooth projective threefold over $\overline{\mathbb{Q}}$ such that
(1) X is rationally connected (e.g. birational to a Fano variety), i.e., every two points are connected by a rational curve, and
(2) X admits an int-amplified endomorphism.

Then every surjective endomorphism g of X (which is not necessarily amplified) satisfies the Kawaguchi-Silverman conjecture. Namely,

$$\alpha_g(P) = d_1(g)$$

where P is any point in X with Zariski-dense orbit, $\alpha_g(P)$ is the arithmetic degree of g at P, and $d_1(g)$ is the first dynamical degree of g, i.e., the spectral radius of $g^*|_{\text{NS}_{\mathbb{C}}(X)}$.
Theorem (Meng-Z. forthcoming)

KSC holds for any surjective morphism on any projective surface X.

Remark

The above result was known in the following cases:

1. X is automorphism [Kawaguchi 2005]
2. X is smooth surface [Matsuzawa-Sano-Shibata 2017]
3. X has an int-amplified endomorphism, and at worst Kawamata log terminal singularities when $K_X \equiv 0$ [Matsuzawa-Yoshikawa 2019]

Matsuzawa (2019) proved KSC for connected linear algebraic groups, (weak) Mori Dream Spaces, as well as (KLT) rationally connected varieties admitting an int-amplified endomorphism by assuming the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$, lower dimensional KSC and the **Flip Termination Conjecture (FTC).**

FTC is a very hard conjecture in birational geometry, would imply the existence of minimal models for non-uniruled varieties, and is still open in dimension > 3.
Theorem (Meng-Z. forthcoming)

KSC holds for any surjective morphism on any projective surface X.

Remark

The above result was known in the following cases:

1. X is automorphism [Kawaguchi 2005]
2. X is smooth surface [Matsuzawa-Sano-Shibata 2017]
3. X has an int-amplified endomorphism, and at worst Kawamata log terminal singularities when $K_X ≡ 0$ [Matsuzawa-Yoshikawa 2019]

Matsuzawa (2019) proved KSC for connected linear algebraic groups, (weak) Mori Dream Spaces, as well as (KLT) rationally connected varieties admitting an int-amplified endomorphism by assuming the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$, lower dimensional KSC and the **Flip Termination Conjecture (FTC).**

FTC is a very hard conjecture in birational geometry, would imply the existence of minimal models for non-uniruled varieties, and is still open in dimension > 3.

De-Qi Zhang (NUS)
Equivariant Minimal Model Program with a View Towards Algebraic and Arithmetic Dynamics
24th May 2019 13 / 16
Theorem (Meng-Z. forthcoming)

KSC holds for any surjective morphism on any projective surface X.

Remark

The above result was known in the following cases:

1. X is automorphism [Kawaguchi 2005]
2. X is smooth surface [Matsuzawa-Sano-Shibata 2017]
3. X has an int-amplified endomorphism, and at worst Kawamata log terminal singularities when $K_X \equiv 0$ [Matsuzawa-Yoshikawa 2019]

Matsuzawa (2019) proved KSC for connected linear algebraic groups, (weak) Mori Dream Spaces, as well as (KLT) rationally connected varieties admitting an int-amplified endomorphism by assuming the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$, lower dimensional KSC and the *Flip Termination Conjecture (FTC).*

FTC is a very hard conjecture in birational geometry, would imply the existence of minimal models for non-uniruled varieties, and is still open in dimension > 3.
Theorem (Meng-Z. forthcoming)

KSC holds for any surjective morphism on any projective surface X.

Remark

The above result was known in the following cases:
(1) X is automorphism [Kawaguchi 2005]
(2) X is smooth surface [Matsuzawa-Sano-Shibata 2017]
(3) X has an int-amplified endomorphism, and at worst Kawamata log terminal singularities when $K_X \equiv 0$ [Matsuzawa-Yoshikawa 2019]

Matsuzawa (2019) proved KSC for connected linear algebraic groups, (weak) Mori Dream Spaces, as well as (KLT) rationally connected varieties admitting an int-amplified endomorphism by assuming the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$, lower dimensional KSC and the Flip Termination Conjecture (FTC).

FTC is a very hard conjecture in birational geometry, would imply the existence of minimal models for non-uniruled varieties, and is still open in dimension > 3.
Theorem (Meng-Z. forthcoming)

KSC holds for any surjective morphism on any projective surface X.

Remark

The above result was known in the following cases:

1. X is automorphism [Kawaguchi 2005]
2. X is smooth surface [Matsuzawa-Sano-Shibata 2017]
3. X has an int-amplified endomorphism, and at worst Kawamata log terminal singularities when $K_X \equiv 0$ [Matsuzawa-Yoshikawa 2019]

Matsuzawa (2019) proved KSC for connected linear algebraic groups, (weak) Mori Dream Spaces, as well as (KLT) rationally connected varieties admitting an int-amplified endomorphism by assuming the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$, lower dimensional KSC and the Flip Termination Conjecture (FTC).

FTC is a very hard conjecture in birational geometry, would imply the existence of minimal models for non-uniruled varieties, and is still open in dimension > 3.
Theorem (Meng-Z. forthcoming)

KSC holds for any surjective morphism on any projective surface X.

Remark

The above result was known in the following cases:
(1) X is automorphism [Kawaguchi 2005]
(2) X is smooth surface [Matsuzawa-Sano-Shibata 2017]
(3) X has an int-amplified endomorphism, and at worst Kawamata log terminal singularities when $K_X \equiv 0$ [Matsuzawa-Yoshikawa 2019]

Matsuzawa (2019) proved KSC for connected linear algebraic groups, (weak) Mori Dream Spaces, as well as (KLT) rationally connected varieties admitting an int-amplified endomorphism by assuming the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$, lower dimensional KSC and the Flip Termination Conjecture (FTC).

FTC is a very hard conjecture in birational geometry, would imply the existence of minimal models for non-uniruled varieties, and is still open in dimension > 3.
Theorem (Meng-Z. forthcoming)

\[KSC \text{ holds for any surjective morphism on any projective surface } X. \]

Remark

The above result was known in the following cases:

1. \(X \) is automorphism [Kawaguchi 2005]
2. \(X \) is smooth surface [Matsuzawa-Sano-Shibata 2017]
3. \(X \) has an int-amplified endomorphism, and at worst Kawamata log terminal singularities when \(K_X \equiv 0 \) [Matsuzawa-Yoshikawa 2019]

Matsuzawa (2019) proved KSC for connected linear algebraic groups, (weak) Mori Dream Spaces, as well as (KLT) rationally connected varieties admitting an int-amplified endomorphism by assuming the anti-Kodaira dimension \(\kappa(X, -K_X) \geq 1 \), lower dimensional KSC and the Flip Termination Conjecture (FTC).

FTC is a very hard conjecture in birational geometry, would imply the existence of minimal models for non-uniruled varieties, and is still open in dimension \(\geq 3 \).
Our Idea of Proving KSC for Rat Conn Threefolds

Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f.

We run MMP on X which is equivariant relative to $\text{SEnd}(X)$ up to finite index. Since X is smooth and rationally connected, it (even with a co-dimension-two subset removed) is still simply connected. We can then show that the EMMP ends with Y a point.

Next, the adjunction formula

$$K_X = f^*K_X + R_f$$

implies that $(f^* - \text{id})(-K_X) = R_f$ which is effective. Using the property of f being int-amplified and the analysis on the cone of effective divisors, we can show that the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$ (cf. [M17]).

This condition was assumed in Matsuzawa’s approach. Since KSC holds for surfaces and using our characterisation of toric varieties, we can prove KSC for rationally connected threefolds.
Our Idea of Proving KSC for Rat Conn Threefolds

Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f.

We run MMP on X which is equivariant relative to $\text{SEnd}(X)$ up to finite index. Since X is smooth and rationally connected, it (even with a co-dimension-two subset removed) is still simply connected. We can then show that the EMMP ends with Y a point.

Next, the adjunction formula

$$K_X = f^*K_X + R_f$$

implies that $(f^* - \text{id})(-K_X) = R_f$ which is effective. Using the property of f being int-amplified and the analysis on the cone of effective divisors, we can show that the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$ (cf. [M17]). This condition was assumed in Matsuzawa’s approach.

Since KSC holds for surfaces and using our characterisation of toric varieties, we can prove KSC for rationally connected threefolds.
Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f.

We run MMP on X which is equivariant relative to $S\text{End}(X)$ up to finite index. Since X is smooth and rationally connected, it (even with a co-dimension-two subset removed) is still simply connected. We can then show that the EMMP ends with Y a point.

Next, the adjuction formula

$$K_X = f^*K_X + R_f$$

implies that $(f^* - \text{id})(-K_X) = R_f$ which is effective. Using the property of f being int-amplified and the analysis on the cone of effective divisors, we can show that the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$ (cf. [M17]). This condition was assumed in Matsuzawa’s approach. Since KSC holds for surfaces and using our characterisation of toric varieties, we can prove KSC for rationally connected threefolds.
Our Idea of Proving KSC for Rat Conn Threefolds

Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f.

We run MMP on X which is equivariant relative to $\text{SEnd}(X)$ up to finite index. Since X is smooth and rationally connected, it (even with a co-dimension-two subset removed) is still simply connected. We can then show that the EMMP ends with Y a point.

Next, the adjunction formula

$$K_X = f^* K_X + R_f$$

implies that $(f^* - \text{id})(-K_X) = R_f$ which is effective. Using the property of f being int-amplified and the analysis on the cone of effective divisors, we can show that the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$ (cf. [M17]).

This condition was assumed in Matsuzawa’s approach. Since KSC holds for surfaces and using our characterisation of toric varieties, we can prove KSC for rationally connected threefolds.
Our Idea of Proving KSC for Rat Conn Threefolds

Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f.

We run MMP on X which is equivariant relative to $\text{SEnd}(X)$ up to finite index. Since X is smooth and rationally connected, it (even with a co-dimension-two subset removed) is still simply connected. We can then show that the EMMP ends with Y a point.

Next, the adjuction formula

$$K_X = f^* K_X + R_f$$

implies that $(f^* - \text{id})(-K_X) = R_f$ which is effective. Using the property of f being int-amplified and the analysis on the cone of effective divisors, we can show that the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$ (cf. [M17]).

This condition was assumed in Matsuzawa’s approach.

Since KSC holds for surfaces and using our characterisation of toric varieties, we can prove KSC for rationally connected threefolds.
Let X be a rationally connected smooth projective variety admitting an int-amplified endomorphism f.

We run MMP on X which is equivariant relative to $\text{SEnd}(X)$ up to finite index. Since X is smooth and rationally connected, it (even with a co-dimension-two subset removed) is still simply connected. We can then show that the EMMP ends with Y a point.

Next, the adjunction formula

$$K_X = f^*K_X + R_f$$

implies that $(f^* - \text{id})(-K_X) = R_f$ which is effective. Using the property of f being int-amplified and the analysis on the cone of effective divisors, we can show that the anti-Kodaira dimension $\kappa(X, -K_X) \geq 1$ (cf. [M17]). This condition was assumed in Matsuzawa’s approach.

Since KSC holds for surfaces and using our characterisation of toric varieties, we can prove KSC for rationally connected threefolds.
Question (Dynamical Degree vs Entropy)

Let

\[f : X \rightarrow X \]

be a dominant rational map with first dynamical degree \(d_1(f) > 1 \).

Can we find a birational model \(X' \) of \(X \) such that the induced map \(f|_{X'} : X' \rightarrow X' \) has the topological entropy \(h(f|_{X'}) > 0 \)?

The converse \(h(f|_{X'}) > 0 \Rightarrow d_1(f) > 1 \) is by Dinh-Sibony; they proved

\[
\max_i \log d_i(f) \geq h(f).
\]

Case 1. \(f \) is a morphism. Yes (Gromov, Yomdin)

Case 2. \(f \) is birational map.

Case 3. \(f \) is a pseudo automorphism.
Question (Dynamical Degree vs Entropy)

Let

\[f : X \rightarrow X \]

be a dominant rational map with first dynamical degree \(d_1(f) > 1 \).

Can we find a birational model \(X' \) of \(X \) such that the induced map

\[f|_{X'} : X' \rightarrow X' \]

has the topological entropy \(h(f|_{X'}) > 0 \)?

The converse \(h(f|_{X'}) > 0 \Rightarrow d_1(f) > 1 \) is by Dinh-Sibony; they proved

\[\max_i \log d_i(f) \geq h(f). \]

Case 1. \(f \) is a morphism. Yes (Gromov, Yomdin)

Case 2. \(f \) is birational map.

Case 3. \(f \) is a pseudo automorphism.
Question (Dynamical Degree vs Entropy)

Let

\[f : X \longrightarrow X \]

be a dominant rational map with first dynamical degree \(d_1(f) > 1 \).

Can we find a birational model \(X' \) of \(X \) such that the induced map \(f|_{X'} : X' \longrightarrow X' \) has the topological entropy \(h(f|_{X'}) > 0 \)?

The converse \(h(f|_{X'}) > 0 \Rightarrow d_1(f) > 1 \) is by Dinh-Sibony; they proved

\[
\max_i \log d_i(f) \geq h(f).
\]

Case 1. \(f \) is a morphism. Yes (Gromov, Yomdin)

Case 2. \(f \) is birational map.

Case 3. \(f \) is a pseudo automorphism.
Question (Dynamical Degree vs Entropy)

Let

\[f : X \to X \]

be a dominant rational map with first dynamical degree \(d_1(f) > 1 \).

Can we find a birational model \(X' \) of \(X \) such that the induced map \(f|_{X'} : X' \to X' \) has the topological entropy \(h(f|_{X'}) > 0 \)?

The converse \(h(f|_{X'}) > 0 \Rightarrow d_1(f) > 1 \) is by Dinh-Sibony; they proved

\[
\max_i \log d_i(f) \geq h(f).
\]

Case 1. \(f \) is a morphism. Yes (Gromov, Yomdin)

Case 2. \(f \) is birational map.

Case 3. \(f \) is a pseudo automorphism.
Let \(f : X \rightarrow X \) be a dominant rational map with first dynamical degree \(d_1(f) > 1 \).

Can we find a birational model \(X' \) of \(X \) such that the induced map \(f|_{X'} : X' \rightarrow X' \) has the topological entropy \(h(f|_{X'}) > 0 \)?

The converse \(h(f|_{X'}) > 0 \Rightarrow d_1(f) > 1 \) is by Dinh-Sibony; they proved

\[
\max_i \log d_i(f) \geq h(f).
\]

Case 1. \(f \) is a morphism. Yes (Gromov, Yomdin)

Case 2. \(f \) is birational map.

Case 3. \(f \) is a pseudo automorphism.
Question (Dynamical Degree vs Entropy)

Let
\[f : X \rightarrow X \]
be a dominant rational map with first dynamical degree \(d_1(f) > 1 \).
Can we find a birational model \(X' \) of \(X \) such that the induced map
\[f|_{X'} : X' \rightarrow X' \]
has the topological entropy \(h(f|_{X'}) > 0 \)?

The converse \(h(f|_{X'}) > 0 \Rightarrow d_1(f) > 1 \) is by Dinh-Sibony; they proved

\[\max_i \log d_i(f) \geq h(f). \]

Case 1. \(f \) is a morphism. Yes (Gromov, Yomdin)
Case 2. \(f \) is birational map.
Case 3. \(f \) is a pseudo automorphism.
Thank you!