Some results on the cohomology of finite flat group schemes

Peter Scholze
3/5/19
Schloss Elmau

Finite flat := finite locally free for this talk

Thm. 1. For any commutative finite flat gp. scheme G/R,

$$\text{RT}^{aff}(R, G) = \text{RT}^{fppf}(R, G),$$

("flat descent").

Restricted to R that are Heuselian along \bullet, $\text{RT}^{aff}(-, G)$ satisfies \bullet-complete flat descent; \uparrow perfectoid R, satisfies \uparrow-complete arc descent.

Thm. 2. For R, G as above, $Z \subseteq \text{Spec } R$ closed, $R \rightarrow S$ that is iso.

along $Z: 0 \rightarrow S \rightarrow \mathcal{O}_Z$, $\text{RF}_z(R, G) \rightarrow \text{RT}_z(S, G)$ ("excision").

If $Z \subset U$ and $\text{RT}_z(-, G)$ satisfies \bullet-complete flat descent, \uparrow-complete arc descent on perfectoids.

Thm. 3. For (R, m) North, local complete intersection of dim d,

G/R comm. finite flat, $H^i_m(R, G) = 0$ for $i < d$.

General strategy: reduce to similar statements in coherent coho. via

(1) Deformation thry.

Ex. If $I \subset R \rightarrow S$ is a square zero-thickening, G/R, $w_G := e^* LG/R$, then $\text{RHom}_R(w_G, I) \rightarrow \text{RT}(R, G) \rightarrow \text{RT}(S, G)$

(2) Dieudonné thry. Let R be an integral perfectoid ring.

Thm. (Lau, $p \gg 3$), S., Anschnitt-Le Bras

\mathcal{F}-div. \mathcal{G}-gps. $/R \cong \mathcal{B}K\mathcal{F}(R) := \{ \text{finite proj. } A_{\text{inf}}(R) \text{- mod's } M \}

\phi^\mathcal{F}: M \rightarrow M \phi^\mathcal{F}$-linear

$V: M \rightarrow M \psi^{-1}$-linear

$\mathcal{E}N = d(d), VF = d$, with d generator of $\text{ker}(A_{\text{inf}}(R) \rightarrow R)$

Ex. If d is chosen right, then

$\mathbb{Q}_p/\mathbb{Z}_p \rightarrow (A_{\text{inf}}(R), F = d, V = \psi^{-1})$

\mathcal{C}-div. gp. schemes $/R \cong \mathcal{B}K\mathcal{F}(R)$

$G \rightarrow \text{M}(G)$

as before but M for torsion?

Will later see that $\text{RT}(R, G) \cong [\text{M}(G) \stackrel{1-V}{{\longrightarrow}} \text{M}(G)]$.

$\text{M}(G)$
Recall (for Thm 1) \(R \to S \) is \(p \)-completely flat if

\[
\exists \mathcal{L}_R, R/p = S/p \quad \text{and} \quad R/p \to S/p \quad \text{flat (faithfully)}
\]

\(R \to S \) is a \(p \)-complete arc cover if for all \(p \)-complete \(\mathcal{L} \)-valuation rings \(V \) and \(R \to V \), \(\exists \quad \mathcal{L}_R, R \to V \) faith fully flat

\[
S \to V
\]

\(p \)-complete \(\mathcal{L} \)-valuation ring

Thus (Blaschke-Newton) If \(R \) Henselian along \(p \) and \(G/\mathcal{L}_p \) of \(p \)-power order, then \(RT: (R[[p]], G) \to RT(R^+[[p]], G) \) and \(R \to RT(R[[p]], G) \) satisfies \(p \)-complete arc-descent.

Thus (Blaschke-S.) On perfectoid \(R \), \(R \to R \) satisfies \(p \)-complete arc cover.

Prop. \(R \) Henselian along \(p \) with \(R[[p^\infty]] \) killed by \(p^\infty \) (so derived and classical \(p \)-adic completions agree). Then

\[
RT_{\text{et}}(R, G) \to \text{Rlim}(RT(R/p^\infty, G)).
\]

In particular, \(RT(R, G) \simeq RT(R^+, G) \)

(\(\text{In general, for } R_{\text{et}} Z/p^\infty \to \hat{R} = \text{derived } p \text{-adic completion.} \)

Let \(R \to R^* \) be an ind-ff hypercover and \(R \to S^* \) levelwise \(p \)-adic Henselization.

Claim: \(\text{LHS for } R = \text{Rlim (LHS for } S^*) \)

\[
\text{RHS} \quad \text{— } \text{RHS}
\]

RHS: \(S^*/p^\infty = R^*/p^\infty \), so follows from ind-ff descent.
LHS: use functorial triangle

\[
RT(S^*/p^\infty, G) \to RT(S^*/p^\infty, G) \to \text{Rlim}(RT(S^*/p^\infty, G))
\]

ok by ind-ff descent

May assume \(R \) has no nonsplit \(\text{ff} \) covers.

\[
\Rightarrow H^{i, \text{ff}}(R, G) = 0 \quad \text{for } i > 0 \quad \text{(same for } R/p^\infty \text{ by using syntomic covers)}
\]
Remains: $H^0(R,G) \Rightarrow \text{Rl}_n H^0(R/p^n, G)$, which is ok by Elkik. □

Pf of Thm:

\[
\begin{align*}
RT(R, G) & \rightarrow RT(R/p, G) = \text{Rl}_n RT(R/p^n, G) \\
RT(R[I], G) & \rightarrow RT(R[I]/p, G)
\end{align*}
\]

ok be away from p

⇒ reduce to R/p^n

Deformation thy ⇒ R an \mathbb{F}_p-alg.

Extract p-power roots ⇒ reduce to semiperfect, then to perfect R,

then use Dieudonné thy. □

Cor. R perfectoid, G/R, then $RT(R, G) = [M(G) \rightarrow M(G)]$.

If both sides satisfy p-complete and have no higher cohomology locally, □

Proof of Purity $H^i_n(R, G) = 0$ for $i < d$ w/ R lax of dim d.

Reductions: G of p-power order, $k = R/m$ alg. closed, R complete.

Induct on i. Cohen: $W(k)[x_1, \ldots, x_n]/(f_1, \ldots, f_m) = R$

\[
\begin{align*}
&\text{id.-smth. completed} \\
&\text{perfectoid } S \\
&\text{perfectoid, so finish using Dieudonné thy.}
\end{align*}
\]